Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1997, Volume 188, Issue 1, Pages 29–60
DOI: https://doi.org/10.1070/sm1997v188n01ABEH000186
(Mi sm186)
 

This article is cited in 2 scientific papers (total in 2 papers)

Spherical partial sums of the double Fourier series of functions of bounded generalized variation

M. I. Dyachenko

M. V. Lomonosov Moscow State University
References:
Abstract: The spherical partial sums of the double Fourier series of functions in the Waterman classes are studied. The main result of the paper is as follows.
Theorem 1. {\it Let $\Lambda_\varepsilon =\biggl\{\dfrac{n^{3/4}}{(\ln(n+1))^{1/2+\varepsilon}}\biggr\}_{n=1}^\infty$ for $\varepsilon>0$. Let $f(x,y)\in\Lambda_\varepsilon BV(T^2)$ and let
\begin{align*} I_r(f)&=\sup_{x,y\in T}\sup_{u,v\in[-1,1]}J_r(f) \\ &=\sup_{x,y\in T}\sup_{u,v\in[-1,1]}\sum_{r-1<|(m,n)|\leqslant r+1}|a_{m,n}(\psi_{x,y,u,v})|\leqslant C \end{align*}
for $r\geqslant 1$, where
$$ \psi _{x,y,u,v}(s,t)=\psi (s,t)=f(x+t,y+s)w(t)w(s)e^{-i(tu+sv)}, \quad and\quad w(\tau)=\frac\tau{2\sin(\theta/2)}\,. $$
Then
$$ \sup_{R\geqslant 1}\sup _{(x,y)\in T^2}|S_R(f,x,y)|\leqslant C(f,\varepsilon). $$
for each $R\geqslant 1$.}
Problem of circular convergence of Fourier series of the characteristic function of plane convex sets are also considered.
Received: 14.03.1996
Russian version:
Matematicheskii Sbornik, 1997, Volume 188, Number 1, Pages 29–58
DOI: https://doi.org/10.4213/sm186
Bibliographic databases:
UDC: 517.52
MSC: 42B05, 42B08, 26B30
Language: English
Original paper language: Russian
Citation: M. I. Dyachenko, “Spherical partial sums of the double Fourier series of functions of bounded generalized variation”, Mat. Sb., 188:1 (1997), 29–58; Sb. Math., 188:1 (1997), 29–60
Citation in format AMSBIB
\Bibitem{Dya97}
\by M.~I.~Dyachenko
\paper Spherical partial sums of the~double Fourier series of functions of bounded generalized variation
\jour Mat. Sb.
\yr 1997
\vol 188
\issue 1
\pages 29--58
\mathnet{http://mi.mathnet.ru/sm186}
\crossref{https://doi.org/10.4213/sm186}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1453250}
\zmath{https://zbmath.org/?q=an:0886.42004}
\transl
\jour Sb. Math.
\yr 1997
\vol 188
\issue 1
\pages 29--60
\crossref{https://doi.org/10.1070/sm1997v188n01ABEH000186}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XE98900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0031287031}
Linking options:
  • https://www.mathnet.ru/eng/sm186
  • https://doi.org/10.1070/sm1997v188n01ABEH000186
  • https://www.mathnet.ru/eng/sm/v188/i1/p29
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:439
    Russian version PDF:233
    English version PDF:11
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024