|
This article is cited in 2 scientific papers (total in 2 papers)
Spherical partial sums of the double Fourier series of functions of bounded generalized variation
M. I. Dyachenko M. V. Lomonosov Moscow State University
Abstract:
The spherical partial sums of the double Fourier series of functions in the Waterman classes are studied. The main result of the paper is as follows.
Theorem 1.
{\it Let
$\Lambda_\varepsilon
=\biggl\{\dfrac{n^{3/4}}{(\ln(n+1))^{1/2+\varepsilon}}\biggr\}_{n=1}^\infty$ for
$\varepsilon>0$. Let
$f(x,y)\in\Lambda_\varepsilon BV(T^2)$ and let
\begin{align*}
I_r(f)&=\sup_{x,y\in T}\sup_{u,v\in[-1,1]}J_r(f)
\\
&=\sup_{x,y\in T}\sup_{u,v\in[-1,1]}\sum_{r-1<|(m,n)|\leqslant r+1}|a_{m,n}(\psi_{x,y,u,v})|\leqslant C
\end{align*}
for $r\geqslant 1$, where
$$
\psi _{x,y,u,v}(s,t)=\psi (s,t)=f(x+t,y+s)w(t)w(s)e^{-i(tu+sv)}, \quad and\quad
w(\tau)=\frac\tau{2\sin(\theta/2)}\,.
$$
Then
$$
\sup_{R\geqslant 1}\sup _{(x,y)\in T^2}|S_R(f,x,y)|\leqslant C(f,\varepsilon).
$$
for each $R\geqslant 1$.}
Problem of circular convergence of Fourier series of the characteristic function of plane convex sets are also considered.
Received: 14.03.1996
Citation:
M. I. Dyachenko, “Spherical partial sums of the double Fourier series of functions of bounded generalized variation”, Mat. Sb., 188:1 (1997), 29–58; Sb. Math., 188:1 (1997), 29–60
Linking options:
https://www.mathnet.ru/eng/sm186https://doi.org/10.1070/sm1997v188n01ABEH000186 https://www.mathnet.ru/eng/sm/v188/i1/p29
|
Statistics & downloads: |
Abstract page: | 439 | Russian version PDF: | 233 | English version PDF: | 11 | References: | 60 | First page: | 1 |
|