Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1987, Volume 57, Issue 1, Pages 131–149
DOI: https://doi.org/10.1070/SM1987v057n01ABEH003059
(Mi sm1810)
 

This article is cited in 35 scientific papers (total in 35 papers)

Universal Menger compacta and universal mappings

A. N. Dranishnikov
References:
Abstract: For any positive integer $n$ the author constructs a continuous mapping $f_n\colon M_n\to M_n$ of the $n$-dimensional Menger compactum onto itself that is universal in the class of mappings between $n$-dimensional compacta, i.e., for any continuous mapping $g\colon X\to Y$ between $n$-dimensional compacta there exist imbeddings of $X$ and $Y$ in $M_n$ such that the restriction of $f_n$ to $X$ is homeomorphic to $g$. The mapping $f_n$ plays the same role in the theory of Menger $n$-dimensional manifolds as the projection $\pi\colon Q\times Q\to Q$ plays in the theory of $Q$-manifolds ($Q$ is the Hilbert cube). It can be used to carry over the classical theorems in the theory of $Q$-manifolds to the theory of $M_n$-manifolds:
Stabilization theorem. {\it For any $M_n$-manifold $X$ and any imbedding of $X$ in $M_n$ the space $f_n^{-1}(X)$ is homeomorphic to $X$.}
Triangulation theorem. {\it For any $M_n$-manifold $X$ there exists an $n$-dimensional polyhedron $K$ such that the space $f_n^{-1}(K)$ is homeomorphic to $X$ for every imbedding of $K$ in $M_n$.}
Bibliography: 20 titles.
Received: 22.11.1984
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1986, Volume 129(171), Number 1, Pages 121–139
Bibliographic databases:
UDC: 515.12
MSC: Primary 54C25, 54C55, 54E45; Secondary 54F45, 54C20
Language: English
Original paper language: Russian
Citation: A. N. Dranishnikov, “Universal Menger compacta and universal mappings”, Mat. Sb. (N.S.), 129(171):1 (1986), 121–139; Math. USSR-Sb., 57:1 (1987), 131–149
Citation in format AMSBIB
\Bibitem{Dra86}
\by A.~N.~Dranishnikov
\paper Universal Menger compacta and universal mappings
\jour Mat. Sb. (N.S.)
\yr 1986
\vol 129(171)
\issue 1
\pages 121--139
\mathnet{http://mi.mathnet.ru/sm1810}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=830099}
\zmath{https://zbmath.org/?q=an:0622.54026}
\transl
\jour Math. USSR-Sb.
\yr 1987
\vol 57
\issue 1
\pages 131--149
\crossref{https://doi.org/10.1070/SM1987v057n01ABEH003059}
Linking options:
  • https://www.mathnet.ru/eng/sm1810
  • https://doi.org/10.1070/SM1987v057n01ABEH003059
  • https://www.mathnet.ru/eng/sm/v171/i1/p121
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:483
    Russian version PDF:165
    English version PDF:28
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024