Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1990, Volume 65, Issue 1, Pages 133–145
DOI: https://doi.org/10.1070/SM1990v065n01ABEH002076
(Mi sm1776)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the derivative of an entire Dirichlet series

M. N. Sheremeta
References:
Abstract: For a sequence $\Lambda=\lambda_n$ of nonnegative numbers increasing to $+\infty$ let $S(\Lambda)$ denote the class of Dirichlet series $F(s)=\sum_{n=0}^\infty a_n\exp(s\lambda_n)$, $s=\sigma+it$, absolutely convergent in $\mathbf C$. If $F\in S(\Lambda)$, then let $M(\sigma)=\sup\{|F(\sigma+it)|:t\in\mathbf R\}$, $L(\sigma)=M'(\sigma)/M(\sigma)$ and $\lambda_{\nu(\sigma)}$ the central exponent. It is shown that for the relation $L(\sigma)\sim\lambda_{\nu(\sigma)}$ to hold as $0\leqslant\sigma\to+\infty$ outside some set of finite measure for each function $F\in S(\Lambda)$ it is necessary and sufficient that $\sum^\infty_{n=0}\frac1{n\lambda_n}<\infty$. This condition can be weakened in the case when an additional restriction is placed on the decrease of the coefficients $a_n$.
Bibliography: 10 titles.
Received: 13.01.1987 and 17.03.1988
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1988, Volume 137(179), Number 1(9), Pages 128–139
Bibliographic databases:
UDC: 517.53
MSC: 30B50
Language: English
Original paper language: Russian
Citation: M. N. Sheremeta, “On the derivative of an entire Dirichlet series”, Mat. Sb. (N.S.), 137(179):1(9) (1988), 128–139; Math. USSR-Sb., 65:1 (1990), 133–145
Citation in format AMSBIB
\Bibitem{She88}
\by M.~N.~Sheremeta
\paper On the derivative of an entire Dirichlet series
\jour Mat. Sb. (N.S.)
\yr 1988
\vol 137(179)
\issue 1(9)
\pages 128--139
\mathnet{http://mi.mathnet.ru/sm1776}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=965884}
\zmath{https://zbmath.org/?q=an:0677.30004|0656.30001}
\transl
\jour Math. USSR-Sb.
\yr 1990
\vol 65
\issue 1
\pages 133--145
\crossref{https://doi.org/10.1070/SM1990v065n01ABEH002076}
Linking options:
  • https://www.mathnet.ru/eng/sm1776
  • https://doi.org/10.1070/SM1990v065n01ABEH002076
  • https://www.mathnet.ru/eng/sm/v179/i1/p128
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:255
    Russian version PDF:90
    English version PDF:16
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024