|
This article is cited in 3 scientific papers (total in 3 papers)
On the derivative of an entire Dirichlet series
M. N. Sheremeta
Abstract:
For a sequence $\Lambda=\lambda_n$ of nonnegative numbers increasing to $+\infty$ let $S(\Lambda)$ denote the class of Dirichlet series $F(s)=\sum_{n=0}^\infty a_n\exp(s\lambda_n)$, $s=\sigma+it$, absolutely convergent in $\mathbf C$. If $F\in S(\Lambda)$, then let $M(\sigma)=\sup\{|F(\sigma+it)|:t\in\mathbf R\}$, $L(\sigma)=M'(\sigma)/M(\sigma)$ and $\lambda_{\nu(\sigma)}$ the central exponent. It is shown that for the relation $L(\sigma)\sim\lambda_{\nu(\sigma)}$ to hold as $0\leqslant\sigma\to+\infty$ outside some set of finite measure for each function $F\in S(\Lambda)$ it is necessary and sufficient that $\sum^\infty_{n=0}\frac1{n\lambda_n}<\infty$. This condition can be weakened in the case when an additional restriction is placed on the decrease of the coefficients $a_n$.
Bibliography: 10 titles.
Received: 13.01.1987 and 17.03.1988
Citation:
M. N. Sheremeta, “On the derivative of an entire Dirichlet series”, Mat. Sb. (N.S.), 137(179):1(9) (1988), 128–139; Math. USSR-Sb., 65:1 (1990), 133–145
Linking options:
https://www.mathnet.ru/eng/sm1776https://doi.org/10.1070/SM1990v065n01ABEH002076 https://www.mathnet.ru/eng/sm/v179/i1/p128
|
Statistics & downloads: |
Abstract page: | 255 | Russian version PDF: | 90 | English version PDF: | 16 | References: | 38 |
|