Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1996, Volume 187, Issue 12, Pages 1737–1753
DOI: https://doi.org/10.1070/SM1996v187n12ABEH000176
(Mi sm176)
 

This article is cited in 4 scientific papers (total in 4 papers)

Number of limit cycles of the quotient system of the $n$-dimensional Fuller problem

V. F. Borisov

State Academy of Consumer Services
References:
Abstract: The number of limit cycles of the quotient system of the $n$-dimensional Fuller problem (that is, the number of one-parameter families of self-similar solutions of the equation $y^{(2n)}=(-1)^{n+1}\operatorname {sgn}y$) is proved to be equal to $[n/2]$.
Received: 29.11.1995
Bibliographic databases:
UDC: 517.977
MSC: Primary 49B10, 34C05; Secondary 93C15
Language: English
Original paper language: Russian
Citation: V. F. Borisov, “Number of limit cycles of the quotient system of the $n$-dimensional Fuller problem”, Sb. Math., 187:12 (1996), 1737–1753
Citation in format AMSBIB
\Bibitem{Bor96}
\by V.~F.~Borisov
\paper Number of limit cycles of the~quotient system of the $n$-dimensional Fuller problem
\jour Sb. Math.
\yr 1996
\vol 187
\issue 12
\pages 1737--1753
\mathnet{http://mi.mathnet.ru//eng/sm176}
\crossref{https://doi.org/10.1070/SM1996v187n12ABEH000176}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1442209}
\zmath{https://zbmath.org/?q=an:0876.34032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WQ48500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030299671}
Linking options:
  • https://www.mathnet.ru/eng/sm176
  • https://doi.org/10.1070/SM1996v187n12ABEH000176
  • https://www.mathnet.ru/eng/sm/v187/i12/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:375
    Russian version PDF:198
    English version PDF:20
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024