|
On the integrability of a conjugate function in $L^p$ with the polynomial weight
R. I. Gurielashvili
Abstract:
For any $p>1$ and any real $\alpha$, $-\infty<\alpha<\infty$, conditions on a function $f\in L_\alpha^p$ ($L_\alpha^p$ is the set of $2\pi$-periodic measurable functions $f$ such that $|f(x)|^p|x|^\alpha$ is integrable on $(-\pi,\pi]$) are found that are necessary and sufficient for its conjugate function $\widetilde f$ to be in $L_\alpha^p$.
Bibliography: 16 titles.
Received: 06.05.1987
Citation:
R. I. Gurielashvili, “On the integrability of a conjugate function in $L^p$ with the polynomial weight”, Mat. Sb. (N.S.), 136(178):3(7) (1988), 341–360; Math. USSR-Sb., 64:2 (1989), 339–358
Linking options:
https://www.mathnet.ru/eng/sm1746https://doi.org/10.1070/SM1989v064n02ABEH003312 https://www.mathnet.ru/eng/sm/v178/i3/p341
|
Statistics & downloads: |
Abstract page: | 374 | Russian version PDF: | 133 | English version PDF: | 15 | References: | 81 |
|