Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1989, Volume 64, Issue 1, Pages 295–303
DOI: https://doi.org/10.1070/SM1989v064n01ABEH003308
(Mi sm1742)
 

This article is cited in 9 scientific papers (total in 9 papers)

On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions

A. I. Bulgakov
References:
Abstract: Let $B$ be a Banach space with norm $\|\cdot\|$, and let $(E,\mathfrak M)$ be a compact topological space with $\sigma$-algebra of measurable sets $\mathfrak M$ on which a nonnegative regular Borel measure $\mu$ is given. Further, let $L_1(E,B)$ be the Banach space of Bochner-integrable functions $u\colon E\to B$, with the norm $\|u\|_{L_1(E,B)}=\int_E\|u(t)\|\,d\mu$, and let $\Phi\colon K\to2^{L_1(E,B)}$ be a multivalued mapping and $P\colon K\to L_1(E,B)$ a single-valued mapping, where $K$ is a compact topological space. Under certain assumptions it is proved that for any $\varepsilon>0$ there exists a continuous mapping $g\colon K\to L_1(E,B)$ such that the following conditions hold for any $x\in K$: $g(x)\in\Phi(x)$, and $\|P(x)-g(x)\|_{L_1(E,B)}<\rho_{L_1(E,B)}[P(x),\Phi(x)]+\varepsilon$, where $\rho_{L_1(E,B)}[\,\cdot\,{,}\,\cdot\,]$ is the distance in $L_1(E,B)$ from a point to a set.
Bibliography: 11 titles.
Received: 13.01.1987
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1988, Volume 136(178), Number 2(6), Pages 292–300
Bibliographic databases:
UDC: 517.965
MSC: Primary 54C65; Secondary 46E30
Language: English
Original paper language: Russian
Citation: A. I. Bulgakov, “On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions”, Mat. Sb. (N.S.), 136(178):2(6) (1988), 292–300; Math. USSR-Sb., 64:1 (1989), 295–303
Citation in format AMSBIB
\Bibitem{Bul88}
\by A.~I.~Bulgakov
\paper On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions
\jour Mat. Sb. (N.S.)
\yr 1988
\vol 136(178)
\issue 2(6)
\pages 292--300
\mathnet{http://mi.mathnet.ru/sm1742}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=954930}
\zmath{https://zbmath.org/?q=an:0711.46025|0664.46025}
\transl
\jour Math. USSR-Sb.
\yr 1989
\vol 64
\issue 1
\pages 295--303
\crossref{https://doi.org/10.1070/SM1989v064n01ABEH003308}
Linking options:
  • https://www.mathnet.ru/eng/sm1742
  • https://doi.org/10.1070/SM1989v064n01ABEH003308
  • https://www.mathnet.ru/eng/sm/v178/i2/p292
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:257
    Russian version PDF:77
    English version PDF:8
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024