Abstract:
A sharp or optimal interpolation theorem is proved for the Lorentz spaces $L_{p,q}$, generalizing the Marcinkiewicz theorem and refining the Riesz–Thorin theorem and the Stein–Weiss theorem. This theorem extends to the spaces $\overline X_{\theta,p}$ of the real method constructed from any Banach pair; thus it extends also to Besov spaces.
Bibliography: 12 titles.
This publication is cited in the following 5 articles:
Mieczysław Mastyło, “Bilinear interpolation theorems”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 119:2 (2025)
Kussainova L., Ospanova A., “Interpolation Theorems For Weighted Sobolev Spaces”, World Congress on Engineering, Wce 2015, Vol i, Lecture Notes in Engineering and Computer Science, eds. Ao S., Gelman L., Hukins D., Hunter A., Korsunsky A., Int Assoc Engineers-Iaeng, 2015, 25–28
Defant A., Mastylo M., Michels C., “Applications of Summing Inclusion Maps to Interpolation of Operators”, Q. J. Math., 54:Part 1 (2003), 61–72
Defant A., Mastylo M., Michels C., “Summing Inclusion Maps Between Symmetric Sequence Spaces”, Trans. Am. Math. Soc., 354:11 (2002), 4473–4492
Mastylo M., Milman M., “Interpolation of Real Method Spaces via Some Ideals of Operators”, Studia Math., 136:1 (1999), 17–35