Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1989, Volume 64, Issue 1, Pages 1–21
DOI: https://doi.org/10.1070/SM1989v064n01ABEH003291
(Mi sm1725)
 

This article is cited in 12 scientific papers (total in 12 papers)

Estimates of rearrangements and imbedding theorems

V. I. Kolyada
References:
Abstract: The modulus of continuity of a function $f\in L^p(I^N)$ ($1\leqslant p<\infty$, $I=[0,1]$), 1-periodic in each variable is defined by
$$ \omega_p(f;\delta)=\sup_{|h|\leqslant\delta}\biggl(\int_{I^N}|f(x)-f(x+h)|^p\,dx\biggr)^{1/p}. $$
The following estimate is established for the nonincreasing rearrangement of a function $f\in L^p(I^N)$ ($p,N\geqslant1$; $\Delta A_n=A_{n+1}-A_n$):
\begin{equation} \sum^\infty_{n=s}2^{-nN}(\Delta f^*(2^{-nN}))^p +2^{-sp}\sum_{n=1}^s2^{n(p-N)}(\Delta f^*(2^{-nN}))^p\leqslant c\omega_p^p(f;2^{-s}). \end{equation}
Also, analytic functions of Hardy class $H^p$ in the unit disk are considered. It is proved that the inequality (1) ($N=1$) holds for the rearrangements of their boundary values also when $0<p<1$ (this is false for real functions of class $L^p$).
Inequality (1) is used to find necessary and sufficient conditions for the space $H^\omega_{p,N}$ ($1\leqslant p<N$) of functions with a given majorant of the $L^p$-modulus of continuity to be imbedded in the Orlicz classes $\varphi(L)$, where $\varphi$ satisfies the $\Delta_2$-condition and $\varphi(t)t^{-p}\uparrow$ on $(0,\infty)$. For $p\geqslant N$ the solution of this problem follows from estimates obtained earlier by the author (RZh.Mat., 1975, 8B 62).
An analogous result is established for classes of functions in the Hardy space $H^p$ ($0<p<1$).
The imbeddings with limiting exponent (Sobolev and Hardy–Littlewood theorems) are limiting cases of the results in this article.
Bibliography: 27 titles.
Received: 04.09.1987
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1988, Volume 136(178), Number 1(5), Pages 3–23
Bibliographic databases:
UDC: 517.5
MSC: Primary 46E35, 46E30; Secondary 26A15, 26A16, 30D55
Language: English
Original paper language: Russian
Citation: V. I. Kolyada, “Estimates of rearrangements and imbedding theorems”, Mat. Sb. (N.S.), 136(178):1(5) (1988), 3–23; Math. USSR-Sb., 64:1 (1989), 1–21
Citation in format AMSBIB
\Bibitem{Kol88}
\by V.~I.~Kolyada
\paper Estimates of rearrangements and imbedding theorems
\jour Mat. Sb. (N.S.)
\yr 1988
\vol 136(178)
\issue 1(5)
\pages 3--23
\mathnet{http://mi.mathnet.ru/sm1725}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=945897}
\zmath{https://zbmath.org/?q=an:0693.46030}
\transl
\jour Math. USSR-Sb.
\yr 1989
\vol 64
\issue 1
\pages 1--21
\crossref{https://doi.org/10.1070/SM1989v064n01ABEH003291}
Linking options:
  • https://www.mathnet.ru/eng/sm1725
  • https://doi.org/10.1070/SM1989v064n01ABEH003291
  • https://www.mathnet.ru/eng/sm/v178/i1/p3
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:551
    Russian version PDF:186
    English version PDF:33
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024