Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1988, Volume 60, Issue 1, Pages 77–106
DOI: https://doi.org/10.1070/SM1988v060n01ABEH003157
(Mi sm1716)
 

This article is cited in 20 scientific papers (total in 20 papers)

Sturm-liouville operators on the whole line, with the same discrete spectrum

B. M. Levitan
References:
Abstract: It is proved that all differential operators of the form
\begin{equation} -y''+q(x) y=\lambda y \qquad (-\infty<x<\infty) \label{1} \end{equation}
whose spectrum $\{\lambda_n\}^\infty_{n=0}$ coincides with the spectrum of the linear oscillator
\begin{equation} -y''+(x^2-1)y=\lambda y \qquad (-\infty<x<\infty), \label{2} \end{equation}
i.e. $\lambda_n=2n$, $n=0,1,2,\dots$, and whose potentials $q(x)$ are sufficiently smooth and differ sufficiently little from the potential $(x^2-1)$ may be obtained by the well-known method of the theory of the inverse Sturm–Liouville problem. This result was obtained earlier by McKean and Trubowitz (Comm. in Math., 1982, v. 82, p. 471–495).
This paper gives another proof of this theorem, based on the following completeness theorem, which is interesting in itself.
Denote by $\{e_n(x)\}^\infty_{n=0}$ the eigenfunctions of equation (1) and by $\{e_n^0(x)\}^\infty_{n=0}$ the eigenfunctions of equation (2). The linear span of the set of functions
$$ \{e_n(x)e_n^0(x)\}^\infty_{n=0}\cup\{[e_n(x)e_n^0(x)]'\}^\infty_{n=0} $$
is dense in the space $L^2(-\infty,\infty)$.
Bibliography: 8 titles.
Received: 28.05.1985
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1987, Volume 132(174), Number 1, Pages 73–103
Bibliographic databases:
UDC: 517.95
MSC: Primary 34B25; Secondary 34B27, 34B30
Language: English
Original paper language: Russian
Citation: B. M. Levitan, “Sturm-liouville operators on the whole line, with the same discrete spectrum”, Mat. Sb. (N.S.), 132(174):1 (1987), 73–103; Math. USSR-Sb., 60:1 (1988), 77–106
Citation in format AMSBIB
\Bibitem{Lev87}
\by B.~M.~Levitan
\paper Sturm-liouville operators on the whole line, with the same discrete spectrum
\jour Mat. Sb. (N.S.)
\yr 1987
\vol 132(174)
\issue 1
\pages 73--103
\mathnet{http://mi.mathnet.ru/sm1716}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=883914}
\zmath{https://zbmath.org/?q=an:0661.34017|0625.34021}
\transl
\jour Math. USSR-Sb.
\yr 1988
\vol 60
\issue 1
\pages 77--106
\crossref{https://doi.org/10.1070/SM1988v060n01ABEH003157}
Linking options:
  • https://www.mathnet.ru/eng/sm1716
  • https://doi.org/10.1070/SM1988v060n01ABEH003157
  • https://www.mathnet.ru/eng/sm/v174/i1/p73
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:637
    Russian version PDF:176
    English version PDF:26
    References:84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024