Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1989, Volume 63, Issue 2, Pages 405–424
DOI: https://doi.org/10.1070/SM1989v063n02ABEH003282
(Mi sm1715)
 

This article is cited in 47 scientific papers (total in 47 papers)

Subgroups of profinite groups acting on trees

P. A. Zalesskii, O. V. Mel'nikov
References:
Abstract: The fundamental groups $\Pi_1(\mathscr G,\Gamma)$ of finite graphs of profinite groups are studied here; the definitions are similar to those of the analogous constructions in Bass-Serre theory. Results are obtained on the following: the disposition of finite and finite normal subgroups of $\Pi_1(\mathscr G,\Gamma)$; intersections of conjugates of vertex-groups; and normalizers of vertex-groups. In the case where $\Pi_1(\mathscr G,\Gamma)$ is not an amalgamated free product $A*_NB$, where $[A:N]=2=[B:N]$, it is proved that a normal subgroup of $\Pi_1(\mathscr G,\Gamma)$ either lies in every edge-group or else has a nonabelian free profinite subgroup.
Proofs are based on the examination of fixed elements of profinite trees with profinite groups acting on them. The definition of profinite tree is close to that in the article RZh.Mat., 1978, 11A232.
Some of our results have been proved already, but only for free products of profinite groups. The methods were different from those in this paper (see RZh.Mat., 1979, 9A180 and 1985, 8A232).
Bibliography: 16 titles.
Received: 16.12.1986
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1988, Volume 135(177), Number 4, Pages 419–439
Bibliographic databases:
UDC: 512.546.37
MSC: Primary 20E18; Secondary 20E06, 05C05
Language: English
Original paper language: Russian
Citation: P. A. Zalesskii, O. V. Mel'nikov, “Subgroups of profinite groups acting on trees”, Mat. Sb. (N.S.), 135(177):4 (1988), 419–439; Math. USSR-Sb., 63:2 (1989), 405–424
Citation in format AMSBIB
\Bibitem{ZalMel88}
\by P.~A.~Zalesskii, O.~V.~Mel'nikov
\paper Subgroups of profinite groups acting on trees
\jour Mat. Sb. (N.S.)
\yr 1988
\vol 135(177)
\issue 4
\pages 419--439
\mathnet{http://mi.mathnet.ru/sm1715}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=942131}
\zmath{https://zbmath.org/?q=an:0693.20026}
\transl
\jour Math. USSR-Sb.
\yr 1989
\vol 63
\issue 2
\pages 405--424
\crossref{https://doi.org/10.1070/SM1989v063n02ABEH003282}
Linking options:
  • https://www.mathnet.ru/eng/sm1715
  • https://doi.org/10.1070/SM1989v063n02ABEH003282
  • https://www.mathnet.ru/eng/sm/v177/i4/p419
  • This publication is cited in the following 47 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1163
    Russian version PDF:187
    English version PDF:24
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024