Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1989, Volume 63, Issue 1, Pages 205–218
DOI: https://doi.org/10.1070/SM1989v063n01ABEH003268
(Mi sm1696)
 

This article is cited in 22 scientific papers (total in 22 papers)

Multiplicative classification of associative rings

A. V. Mikhalev
References:
Abstract: Let $R$ be a ring, $l(a)$ and $r(a)$ the left and right annihilators of the element $a\in R$, $\mathrm{AC}(R)=\sum_{a,b\in R}l(a)bl(b)a$ the two-sided ideal in $R$ called the additive controller, and let $\alpha\colon R\to S$ be an $m$-isomorphism (i.e., multiplicative isomorphism) and $D(\alpha)=\{[(x+y)^\alpha-x^\alpha-y^\alpha]^{\alpha^{-1}}/x,y\in R\}$ its defect. An ideal $I$ in the ring $R$ is called an $m$-ideal if for all $m$-isomorphisms $\alpha\colon R\to S$, $L^\alpha$ is an ideal in $S$ and $a-b\in L$ if and only if $a^\alpha-b^\alpha\in L^\alpha$. It is shown that
$$ D(\alpha)\mathrm{AC}(R)=0=\mathrm{AC}(R)D(\alpha). $$
Very general sufficient conditions are given that a multiplicative isomorphism of subsemigroups of multiplicative semigroups of rings be extendible to the isomorphism of the subrings generated by them. Minimal prime ideals and the prime radical of a ring are $m$-ideals. The strongly regular and regular rings that have unique addition are characterized.
Bibliography: 29 titles.
Received: 08.12.1986
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1988, Volume 135(177), Number 2, Pages 210–224
Bibliographic databases:
UDC: 512.552.1
MSC: Primary 16A48; Secondary 16A12, 16A30, 16A34, 16A66
Language: English
Original paper language: Russian
Citation: A. V. Mikhalev, “Multiplicative classification of associative rings”, Mat. Sb. (N.S.), 135(177):2 (1988), 210–224; Math. USSR-Sb., 63:1 (1989), 205–218
Citation in format AMSBIB
\Bibitem{Mik88}
\by A.~V.~Mikhalev
\paper Multiplicative classification of associative rings
\jour Mat. Sb. (N.S.)
\yr 1988
\vol 135(177)
\issue 2
\pages 210--224
\mathnet{http://mi.mathnet.ru/sm1696}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=937807}
\zmath{https://zbmath.org/?q=an:0668.16019|0645.16024}
\transl
\jour Math. USSR-Sb.
\yr 1989
\vol 63
\issue 1
\pages 205--218
\crossref{https://doi.org/10.1070/SM1989v063n01ABEH003268}
Linking options:
  • https://www.mathnet.ru/eng/sm1696
  • https://doi.org/10.1070/SM1989v063n01ABEH003268
  • https://www.mathnet.ru/eng/sm/v177/i2/p210
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:480
    Russian version PDF:180
    English version PDF:33
    References:50
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024