Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1989, Volume 63, Issue 1, Pages 121–139
DOI: https://doi.org/10.1070/SM1989v063n01ABEH003263
(Mi sm1691)
 

This article is cited in 39 scientific papers (total in 39 papers)

On the integrability of Hamiltonian systems with toral position space

V. V. Kozlov, D. V. Treschev
References:
Abstract: This paper considers the problem on the complete integrability of a Hamiltonian system with a toral position space, with Euclidean kinetic energy and a small analytic potential. Necessary integrability conditions are found in the case when the potential is a trigonometric polynomial. These conditions are also necessary conditions of existence of additional first integrals, polynomial in the momenta (with no assumption on the smallness of the potential). The proofs are based on a detailed analysis of the classical scheme of perturbation theory. The general results are applied to the study of the complete integrability of the well-known problem on the motion of $n$ points along a line with periodic interaction potential. In particular, the nonintegrability of the “open” chain of interactions of particles is proved for $n>2$; the “periodic” chain is nonintegrable with the additional condition that the potential be a nonconstant trigonometric polynomial. Conditions for complete integrability of the generalized nonperiodic Toda chain are discussed.
Bibliography: 17 titles.
Received: 25.11.1986
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1988, Volume 135(177), Number 1, Pages 119–138
Bibliographic databases:
Document Type: Article
UDC: 517.9+531.01
MSC: Primary 58F07, 58F05; Secondary 70H05
Language: English
Original paper language: Russian
Citation: V. V. Kozlov, D. V. Treschev, “On the integrability of Hamiltonian systems with toral position space”, Math. USSR-Sb., 63:1 (1989), 121–139
Citation in format AMSBIB
\Bibitem{KozTre88}
\by V.~V.~Kozlov, D.~V.~Treschev
\paper On the integrability of Hamiltonian systems with toral position space
\jour Math. USSR-Sb.
\yr 1989
\vol 63
\issue 1
\pages 121--139
\mathnet{http://mi.mathnet.ru//eng/sm1691}
\crossref{https://doi.org/10.1070/SM1989v063n01ABEH003263}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=933488}
\zmath{https://zbmath.org/?q=an:0696.58022}
Linking options:
  • https://www.mathnet.ru/eng/sm1691
  • https://doi.org/10.1070/SM1989v063n01ABEH003263
  • https://www.mathnet.ru/eng/sm/v177/i1/p119
  • This publication is cited in the following 39 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:860
    Russian version PDF:227
    English version PDF:28
    References:80
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024