Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1989, Volume 63, Issue 1, Pages 59–80
DOI: https://doi.org/10.1070/SM1989v063n01ABEH003260
(Mi sm1688)
 

On a description of bases of generalized systems of exponentials

B. V. Vinnitskii
References:
Abstract: All bases of the form $\{f(\lambda_nz)\}$ are described for the space $A_R$. In particular, it is shown that for a given entire function $f$ there exists a countable set $\{\lambda_n\}$ such that the system $\{f(\lambda_nz)\}$ forms a basis in $A_R$, $0<R<\infty$ if and only if $f_n\ne0$ for all $n$, $\lim\limits_{n\to\infty}|\hat f_n/f_n|^{1/n}=1$ and $(\exists\,\sigma>1)(\exists\,\sigma_1>1)(\forall\,k\geqslant1)(\forall\,m\geqslant k)$: $\varkappa_k/\varkappa_m\leqslant\sigma_1^k/\sigma^m$ where $\varkappa_n=|f_{n-1}/f_n|$, $\hat f$ is the Newton majorant of the function $f$, and $f_n=f^{(n)}(0)/n!$ .
Bibliography: 20 titles.
Received: 22.10.1986
Bibliographic databases:
UDC: 517.5
MSC: Primary 30B60, 30B50; Secondary 46A35, 46E10, 41A58
Language: English
Original paper language: Russian
Citation: B. V. Vinnitskii, “On a description of bases of generalized systems of exponentials”, Math. USSR-Sb., 63:1 (1989), 59–80
Citation in format AMSBIB
\Bibitem{Vin88}
\by B.~V.~Vinnitskii
\paper On a description of bases of generalized systems of exponentials
\jour Math. USSR-Sb.
\yr 1989
\vol 63
\issue 1
\pages 59--80
\mathnet{http://mi.mathnet.ru//eng/sm1688}
\crossref{https://doi.org/10.1070/SM1989v063n01ABEH003260}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=933485}
\zmath{https://zbmath.org/?q=an:0667.30002|0638.30004}
Linking options:
  • https://www.mathnet.ru/eng/sm1688
  • https://doi.org/10.1070/SM1989v063n01ABEH003260
  • https://www.mathnet.ru/eng/sm/v177/i1/p59
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:274
    Russian version PDF:86
    English version PDF:11
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024