Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1991, Volume 68, Issue 2, Pages 303–323
DOI: https://doi.org/10.1070/SM1991v068n02ABEH002106
(Mi sm1669)
 

This article is cited in 5 scientific papers (total in 5 papers)

Approximation of solutions of the equation $\overline\partial^jf=0$, $j\geqslant1$, in domain with quasiconformal boundary

V. V. Andrievskii, V. I. Belyi, V. V. Maimeskul
References:
Abstract: This article establishes direct and inverse theorems of approximation theory (of the same type as theorems of Dzyadyk) that describe the quantitative connection between the smoothness properties of solutions of the equation
$$\overline\partial^jf=0,\qquad j\geqslant1,$$
and the rate of their approximation by “module” polynomials of the form
$$ P_N(z)=\sum_{n=0}^{j-1}\sum_{m=0}^{N-n}a_{m,n}z^m\overline z^n,\qquad N\geqslant j-1. $$
In particular, a constructive characterization is obtained for generalized Hölder classes of such functions on domains with quasiconformal boundary.
Bibliography: 19 titles.
Received: 09.10.1988
Bibliographic databases:
UDC: 517.53
MSC: Primary 30E10, 41A10, 30G30; Secondary 30C60
Language: English
Original paper language: Russian
Citation: V. V. Andrievskii, V. I. Belyi, V. V. Maimeskul, “Approximation of solutions of the equation $\overline\partial^jf=0$, $j\geqslant1$, in domain with quasiconformal boundary”, Math. USSR-Sb., 68:2 (1991), 303–323
Citation in format AMSBIB
\Bibitem{AndBelMai89}
\by V.~V.~Andrievskii, V.~I.~Belyi, V.~V.~Maimeskul
\paper Approximation of solutions of the equation $\overline\partial^jf=0$, $j\geqslant1$, in domain with quasiconformal boundary
\jour Math. USSR-Sb.
\yr 1991
\vol 68
\issue 2
\pages 303--323
\mathnet{http://mi.mathnet.ru//eng/sm1669}
\crossref{https://doi.org/10.1070/SM1991v068n02ABEH002106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1034423}
\zmath{https://zbmath.org/?q=an:0704.35034|0712.35032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991FE73700001}
Linking options:
  • https://www.mathnet.ru/eng/sm1669
  • https://doi.org/10.1070/SM1991v068n02ABEH002106
  • https://www.mathnet.ru/eng/sm/v180/i11/p1443
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024