Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1991, Volume 68, Issue 1, Pages 61–83
DOI: https://doi.org/10.1070/SM1991v068n01ABEH001196
(Mi sm1657)
 

This article is cited in 8 scientific papers (total in 8 papers)

On an integral equation for the Dirichlet problem in a plane domain with cusps on the boundary

V. G. Maz'ya, A. A. Soloviev
References:
Abstract: Integral equations for the Dirichlet problem for the Laplace operator are studied in a plane domain whose boundary has interior or exterior peaks with tangency of first order. Theorems on unique solvability and asymptotics of solutions near the peaks are presented.
Bibliography: 8 titles.
Received: 19.09.1988
Bibliographic databases:
UDC: 539.3
MSC: 31A25, 35J05, 45A05
Language: English
Original paper language: Russian
Citation: V. G. Maz'ya, A. A. Soloviev, “On an integral equation for the Dirichlet problem in a plane domain with cusps on the boundary”, Math. USSR-Sb., 68:1 (1991), 61–83
Citation in format AMSBIB
\Bibitem{MazSol89}
\by V.~G.~Maz'ya, A.~A.~Soloviev
\paper On an integral equation for the Dirichlet problem in a~plane domain with cusps on the boundary
\jour Math. USSR-Sb.
\yr 1991
\vol 68
\issue 1
\pages 61--83
\mathnet{http://mi.mathnet.ru/eng/sm1657}
\crossref{https://doi.org/10.1070/SM1991v068n01ABEH001196}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1017822}
\zmath{https://zbmath.org/?q=an:0683.45002|0709.45010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991EX22700004}
Linking options:
  • https://www.mathnet.ru/eng/sm1657
  • https://doi.org/10.1070/SM1991v068n01ABEH001196
  • https://www.mathnet.ru/eng/sm/v180/i9/p1211
  • This publication is cited in the following 8 articles:
    1. Bezrodnykh S. Bogatyrev A. Goreinov S. Grigor'ev O. Hakula H. Vuorinen M., “On Capacity Computation For Symmetric Polygonal Condensers”, J. Comput. Appl. Math., 361 (2019), 271–282  crossref  mathscinet  zmath  isi
    2. Hyeonbae Kang, Hyundae Lee, KiHyun Yun, “Optimal estimates and asymptotics for the stress concentration between closely located stiff inclusions”, Math. Ann, 2015  crossref  mathscinet
    3. Mazya V.G., Poborchii S.V., “O predstavlenii resheniya zadachi Neimana v oblasti s pikom garmonicheskim potentsialom prostogo sloya”, Vestn. Sankt-Peterburgskogo un-ta. Ser. 1: Matem., Mekh., Astronom., 2009, no. 3, 41–49  zmath  elib
    4. Mazya V.G., Poborchii S.V., “Odnoznachnaya razreshimost integralnogo uravneniya dlya garmonicheskogo potentsiala prostogo sloya na granitse oblasti s pikom”, Vestn. Sankt-Peterburgskogo un-ta. Ser. 1: Matem., Mekh., Astronom., 2009, no. 2, 63–73  elib
    5. Kokilashvili V. Meshveliani Z. Paatashvili V., “Boundary Value Problems for Analytic and Harmonic Functions of Smirnov Classes in Domains with Non-Smooth Boundaries”, Factorization, Singular Operators and Related Problems, Proceedings, ed. Samko S. Lebre A. DosSantos A., Springer, 2003, 175–196  crossref  mathscinet  isi
    6. Chkadua O., “The Dirichlet, Neumann and Mixed Boundary Value Problems of the Theory of Elasticity in N-Dimensional Domains with Boundaries Containing Closed Cuspidal Edges”, Math. Nachr., 189 (1998), 61–105  crossref  mathscinet  zmath  isi
    7. A. A. Soloviev, “Integral equations for the Dirichlet and Neumann boundary value problems in a plane domain with a cusp on the boundary”, Math. Notes, 59:6 (1996), 637–645  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. R. Duduchava, T. Latsabidze, A. Saginashvili, “Singular integral operators with the complex conjugation on curves with cusps”, Integr equ oper theory, 22:1 (1995), 1  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:575
    Russian version PDF:180
    English version PDF:36
    References:94
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025