|
This article is cited in 7 scientific papers (total in 7 papers)
On the method of stationary states for quasilinear parabolic equations
V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii
Abstract:
A method is presented for investigating the space-time structure of unbounded nonnegative solutions of quasilinear parabolic equations of the form $u_t=\mathbf A(u)$, where $\mathbf A$ is a nonlinear elliptic operator. Three examples are considered in detail: the Cauchy problem for the equation
$$
u_t=\nabla\cdot((1+|\nabla u|^2)^{\sigma/2}\nabla u)+u^\beta,
$$
where $\sigma>0$ and $\beta>1$ are constants; the boundary value problem in $\Omega=R^3\cap\{x_3>0\}$
\begin{gather*}
u_t=\nabla\cdot((1+u^\sigma)\nabla u),\qquad t>0,\quad x\in\Omega;
\\
-(1+u^\sigma)u_{x_3}=u^\alpha,\qquad t>0,\ x_3=0;\quad\alpha=\mathrm{const}>0;
\end{gather*}
and the Cauchy problem for the system $u_t=\nabla\cdot((1+u^2)^{1/2}\nabla u)+vw$, $v_t=\nabla\cdot((1+v^2)\nabla v)+u^pw$, $w_t=\nabla\cdot((1+w^2)^{3/2}\nabla w)uw$, $p\geqslant1$. It is assumed that at the point $x=0$ the solution grows without bound as $t\to T_0^-<+\infty$. The derivation of an estimate of the solution near $t=T_0^-$, $x=0$ is based on an analysis of an appropriate family of stationary solutions $\{U_\lambda\}$: $\mathbf A(U_\lambda)=0$, $U_\lambda(0)=\lambda$, $\lambda>0$ a parameter. It is shown that the behavior of a solution as $t\to T_0^-$ depends to large extent on the structure of the “envelope” $L(x)=\sup\limits_{\lambda>0}U_\lambda(x)$. In particular, if $L(x)\equiv+\infty$, then $u(t,x)$ grows without bound as $t\to T_0^-$ at points arbitrarily far from $x=0$. If $L(x)<+\infty$ for $x\ne0$, then $L(x)$ determines a lower bound for $u(t,x)$ in a neighborhood of $t=T_0^-$, $x=0$.
Bibliography: 28 titles.
Received: 29.06.1988
Citation:
V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii, “On the method of stationary states for quasilinear parabolic equations”, Math. USSR-Sb., 67:2 (1990), 449–471
Linking options:
https://www.mathnet.ru/eng/sm1646https://doi.org/10.1070/SM1990v067n02ABEH002091 https://www.mathnet.ru/eng/sm/v180/i8/p995
|
Statistics & downloads: |
Abstract page: | 673 | Russian version PDF: | 197 | English version PDF: | 13 | References: | 88 | First page: | 1 |
|