Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1990, Volume 67, Issue 2, Pages 449–471
DOI: https://doi.org/10.1070/SM1990v067n02ABEH002091
(Mi sm1646)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the method of stationary states for quasilinear parabolic equations

V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii
References:
Abstract: A method is presented for investigating the space-time structure of unbounded nonnegative solutions of quasilinear parabolic equations of the form $u_t=\mathbf A(u)$, where $\mathbf A$ is a nonlinear elliptic operator. Three examples are considered in detail: the Cauchy problem for the equation
$$ u_t=\nabla\cdot((1+|\nabla u|^2)^{\sigma/2}\nabla u)+u^\beta, $$
where $\sigma>0$ and $\beta>1$ are constants; the boundary value problem in $\Omega=R^3\cap\{x_3>0\}$
\begin{gather*} u_t=\nabla\cdot((1+u^\sigma)\nabla u),\qquad t>0,\quad x\in\Omega; \\ -(1+u^\sigma)u_{x_3}=u^\alpha,\qquad t>0,\ x_3=0;\quad\alpha=\mathrm{const}>0; \end{gather*}
and the Cauchy problem for the system $u_t=\nabla\cdot((1+u^2)^{1/2}\nabla u)+vw$, $v_t=\nabla\cdot((1+v^2)\nabla v)+u^pw$, $w_t=\nabla\cdot((1+w^2)^{3/2}\nabla w)uw$, $p\geqslant1$. It is assumed that at the point $x=0$ the solution grows without bound as $t\to T_0^-<+\infty$. The derivation of an estimate of the solution near $t=T_0^-$, $x=0$ is based on an analysis of an appropriate family of stationary solutions $\{U_\lambda\}$: $\mathbf A(U_\lambda)=0$, $U_\lambda(0)=\lambda$, $\lambda>0$ a parameter. It is shown that the behavior of a solution as $t\to T_0^-$ depends to large extent on the structure of the “envelope” $L(x)=\sup\limits_{\lambda>0}U_\lambda(x)$. In particular, if $L(x)\equiv+\infty$, then $u(t,x)$ grows without bound as $t\to T_0^-$ at points arbitrarily far from $x=0$. If $L(x)<+\infty$ for $x\ne0$, then $L(x)$ determines a lower bound for $u(t,x)$ in a neighborhood of $t=T_0^-$, $x=0$.
Bibliography: 28 titles.
Received: 29.06.1988
Bibliographic databases:
UDC: 517.956
MSC: Primary 35K65, 35B40; Secondary 35K57
Language: English
Original paper language: Russian
Citation: V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii, “On the method of stationary states for quasilinear parabolic equations”, Math. USSR-Sb., 67:2 (1990), 449–471
Citation in format AMSBIB
\Bibitem{GalKurSam89}
\by V.~A.~Galaktionov, S.~P.~Kurdyumov, A.~A.~Samarskii
\paper On the method of stationary states for quasilinear parabolic equations
\jour Math. USSR-Sb.
\yr 1990
\vol 67
\issue 2
\pages 449--471
\mathnet{http://mi.mathnet.ru//eng/sm1646}
\crossref{https://doi.org/10.1070/SM1990v067n02ABEH002091}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1019478}
\zmath{https://zbmath.org/?q=an:0701.35010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990EN23400008}
Linking options:
  • https://www.mathnet.ru/eng/sm1646
  • https://doi.org/10.1070/SM1990v067n02ABEH002091
  • https://www.mathnet.ru/eng/sm/v180/i8/p995
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:673
    Russian version PDF:197
    English version PDF:13
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024