Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1996, Volume 187, Issue 10, Pages 1465–1485
DOI: https://doi.org/10.1070/SM1996v187n10ABEH000164
(Mi sm164)
 

This article is cited in 12 scientific papers (total in 12 papers)

Convolution equation with a completely monotonic kernel on the half-line

N. B. Engibaryan, B. N. Enginbarian

Byurakan Astrophysical Observatory, National Academy of Sciences of Armenia
References:
Abstract: The Wiener-Hopf integral equation
\begin {equation} f(x)=g(x)+\int _0^\infty K(x-t) f(t)\,dt,\qquad (I-K)f=g \tag{{1}}\end {equation}
and the related problems of factorization are considered for the kernels $\displaystyle K(\pm x)=\int _a^b e^{-xp}\,d\sigma _\pm (p)$, where $\sigma _\pm (p)\uparrow{}$ and $\displaystyle\mu \equiv \sum _\pm \int _a^b \frac 1p\,d\sigma _\pm (p)<+\infty$. If $K$ is even or the symbol $1-\widehat K(s)$ has a positive zero, then the existence of Volterra factorization is proved in the supercritical case $\mu >1$. An extension of this result to the general supercritical case is indicated. The solubility of the corresponding equation (1) is proved for $g \in L_1(0,\infty )$. Several other results in the supercritical case or for $\mu=1$ are obtained. The approach discussed is essentially based on the method of special factorization and on the generalized Ambartsumyan equations.
Received: 08.08.1995
Russian version:
Matematicheskii Sbornik, 1996, Volume 187, Number 10, Pages 53–72
DOI: https://doi.org/10.4213/sm164
Bibliographic databases:
UDC: 517.968
MSC: 45E10, 47G10
Language: English
Original paper language: Russian
Citation: N. B. Engibaryan, B. N. Enginbarian, “Convolution equation with a completely monotonic kernel on the half-line”, Mat. Sb., 187:10 (1996), 53–72; Sb. Math., 187:10 (1996), 1465–1485
Citation in format AMSBIB
\Bibitem{EngEng96}
\by N.~B.~Engibaryan, B.~N.~Enginbarian
\paper Convolution equation with a~completely monotonic kernel on the~half-line
\jour Mat. Sb.
\yr 1996
\vol 187
\issue 10
\pages 53--72
\mathnet{http://mi.mathnet.ru/sm164}
\crossref{https://doi.org/10.4213/sm164}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1438976}
\zmath{https://zbmath.org/?q=an:0873.45002}
\transl
\jour Sb. Math.
\yr 1996
\vol 187
\issue 10
\pages 1465--1485
\crossref{https://doi.org/10.1070/SM1996v187n10ABEH000164}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WE55900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030300528}
Linking options:
  • https://www.mathnet.ru/eng/sm164
  • https://doi.org/10.1070/SM1996v187n10ABEH000164
  • https://www.mathnet.ru/eng/sm/v187/i10/p53
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:528
    Russian version PDF:241
    English version PDF:12
    References:55
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024