Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 7, Pages 951–975
DOI: https://doi.org/10.1070/SM2006v197n07ABEH003784
(Mi sm1589)
 

This article is cited in 41 scientific papers (total in 41 papers)

Projective geometry of systems of second-order differential equations

A. V. Aminovaa, N. A.-M. Aminovb

a Kazan State University
b Tupolev Kazan State Technical University
References:
Abstract: It is proved that every projective connection on an $n$-dimensional manifold $M$ is locally defined by a system $\mathscr S$ of $n-1$ second-order ordinary differential equations resolved with respect to the second derivatives and with right-hand sides cubic in the first derivatives, and that every differential system $\mathscr S$ defines a projective connection on $M$. The notion of equivalent differential systems is introduced and necessary and sufficient conditions are found for a system $\mathscr S$ to be reducible by a change of variables to a system whose integral curves are straight lines. It is proved that the symmetry group of a differential system $\mathscr S$ is a group of projective transformations in $n$-dimensional space with the associated projective connection and has dimension $\leqslant n^2+2n$. Necessary and sufficient conditions are found for a system to admit the maximal symmetry group; basis vector fields and structure equations of the maximal symmetry Lie algebra are produced. As an application a classification is given of the systems $\mathscr S$ of two second-order differential equations admitting three-dimensional soluble symmetry groups.
Bibliography: 22 titles.
Received: 17.02.2005
Russian version:
Matematicheskii Sbornik, 2006, Volume 197, Number 7, Pages 3–28
DOI: https://doi.org/10.4213/sm1589
Bibliographic databases:
UDC: 514.763
MSC: Primary 53B10; Secondary 34A26, 34C14
Language: English
Original paper language: Russian
Citation: A. V. Aminova, N. A. Aminov, “Projective geometry of systems of second-order differential equations”, Mat. Sb., 197:7 (2006), 3–28; Sb. Math., 197:7 (2006), 951–975
Citation in format AMSBIB
\Bibitem{AmiAmi06}
\by A.~V.~Aminova, N.~A.~Aminov
\paper Projective geometry of systems of second-order differential equations
\jour Mat. Sb.
\yr 2006
\vol 197
\issue 7
\pages 3--28
\mathnet{http://mi.mathnet.ru/sm1589}
\crossref{https://doi.org/10.4213/sm1589}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2277329}
\zmath{https://zbmath.org/?q=an:1143.53310}
\elib{https://elibrary.ru/item.asp?id=9296521}
\transl
\jour Sb. Math.
\yr 2006
\vol 197
\issue 7
\pages 951--975
\crossref{https://doi.org/10.1070/SM2006v197n07ABEH003784}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241860100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33751022006}
Linking options:
  • https://www.mathnet.ru/eng/sm1589
  • https://doi.org/10.1070/SM2006v197n07ABEH003784
  • https://www.mathnet.ru/eng/sm/v197/i7/p3
  • This publication is cited in the following 41 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1113
    Russian version PDF:365
    English version PDF:25
    References:76
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024