Abstract:
In the passage from fields to rings of coefficients quadratic forms with invertible matrices lose their decisive role. It turns out that if all quadratic forms over a ring are diagonalizable, then in effect this is always a local principal ideal ring R with 2∈R∗. The problem of the construction of a ‘normal’ diagonal form of a quadratic form over a ring R faces obstacles in the case of indices |R∗:R∗2| greater than 1. In the case of index 2 this problem has a solution given in Theorem 2.1 for 1+R∗2⊆R∗2 (an extension of the law of inertia for real quadratic forms) and in Theorem 2.2 for 1+R2 containing an invertible non-square. Under the same conditions on a ring R with nilpotent maximal ideal the number of classes of projectively congruent quadratic forms of the projective space associated with a free R-module of rank n is explicitly calculated (Proposition 3.2). Up to projectivities, the list of forms is presented for the projective plane over R and also (Theorem 3.3) over the local ring F[[x,y]]/⟨x2,xy,y2⟩ with non-principal maximal ideal, where F=2F is a field with an invertible non-square in 1+F2 and |F∗:F∗2|=2. In the latter case the number of classes of non-diagonalizable quadratic forms of rank 0 depends on one's choice of the field F and is not even always finite; all the other forms make up 21 classes.
Bibliography: 28 titles.
\Bibitem{LevSta06}
\by V.~M.~Levchuk, O.~A.~Starikova
\paper Quadratic forms of projective spaces over rings
\jour Sb. Math.
\yr 2006
\vol 197
\issue 6
\pages 887--899
\mathnet{http://mi.mathnet.ru/eng/sm1570}
\crossref{https://doi.org/10.1070/SM2006v197n06ABEH003782}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2477283}
\zmath{https://zbmath.org/?q=an:1156.11016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240354900010}
\elib{https://elibrary.ru/item.asp?id=17309849}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748869473}
Linking options:
https://www.mathnet.ru/eng/sm1570
https://doi.org/10.1070/SM2006v197n06ABEH003782
https://www.mathnet.ru/eng/sm/v197/i6/p97
This publication is cited in the following 11 articles:
O. A. Starikova, “Perechislenie proektivno kongruentnykh simmetrichnykh matrits”, Vestnik rossiiskikh universitetov. Matematika, 24:126 (2019), 204–210
Cruickshank J., Quinlan R., Szechtman F., “Hermitian and Skew Hermitian Forms Over Local Rings”, Linear Alg. Appl., 551 (2018), 147–161
GEORGY P. EGORYCHEV, FERIDE KUZUCUOĞLU, VLADIMIR M. LEVCHUK, “ENUMERATION OF IDEALS OF SOME NILPOTENT MATRIX RINGS”, J. Algebra Appl, 12:01 (2013), 1250140
O. A. Starikova, “Classes of projectively equivalent quadrics over local rings”, Discrete Math. Appl., 23:3-4 (2013), 385–398
O. A. Starikova, “Quadratic forms and quadrics of space over local rings”, J. Math. Sci., 187:2 (2012), 177–186
O. A. Starikova, A. V. Svistunova, “Enumeration of quadrics of projective spaces over local rings”, Russian Math. (Iz. VUZ), 55:12 (2011), 48–51
Starikova O.A., “Kvadriki proektivnoi ploskosti nad lokalnym koltsom s dvuporozhdennym maksimalnym idealom”, Vestn. Severo-Vostochnogo gos. un-ta, 15:15 (2011), 102–107
Olga A. Starikova, “Simmetrichnye formy nad polulokalnymi koltsami”, Zhurn. SFU. Ser. Matem. i fiz., 2:1 (2009), 116–121
Cao Yonglin, Szechtman F., “Congruence of symmetric matrices over local rings”, Linear Algebra Appl., 431:9 (2009), 1687–1690
Egorychev G.P., Zima E.V., “Simple formulae for the number of quadrics and symmetric forms of modules over local rings”, Comm. Algebra, 36:4 (2008), 1426–1436
V. M. Levchuk, O. A. Starikova, “A normal form and schemes of quadratic forms”, J. Math. Sci., 152:4 (2008), 558–570