Processing math: 100%
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 6, Pages 887–899
DOI: https://doi.org/10.1070/SM2006v197n06ABEH003782
(Mi sm1570)
 

This article is cited in 11 scientific papers (total in 11 papers)

Quadratic forms of projective spaces over rings

V. M. Levchuka, O. A. Starikovab

a Krasnoyarsk State University
b Northern International University
References:
Abstract: In the passage from fields to rings of coefficients quadratic forms with invertible matrices lose their decisive role. It turns out that if all quadratic forms over a ring are diagonalizable, then in effect this is always a local principal ideal ring R with 2R. The problem of the construction of a ‘normal’ diagonal form of a quadratic form over a ring R faces obstacles in the case of indices |R:R2| greater than 1. In the case of index 2 this problem has a solution given in Theorem 2.1 for 1+R2R2 (an extension of the law of inertia for real quadratic forms) and in Theorem 2.2 for 1+R2 containing an invertible non-square. Under the same conditions on a ring R with nilpotent maximal ideal the number of classes of projectively congruent quadratic forms of the projective space associated with a free R-module of rank n is explicitly calculated (Proposition 3.2). Up to projectivities, the list of forms is presented for the projective plane over R and also (Theorem 3.3) over the local ring F[[x,y]]/x2,xy,y2 with non-principal maximal ideal, where F=2F is a field with an invertible non-square in 1+F2 and |F:F2|=2. In the latter case the number of classes of non-diagonalizable quadratic forms of rank 0 depends on one's choice of the field F and is not even always finite; all the other forms make up 21 classes.
Bibliography: 28 titles.
Received: 04.10.2004 and 18.04.2005
Bibliographic databases:
UDC: 512.7
MSC: Primary 15A63; Secondary 10C05
Language: English
Original paper language: Russian
Citation: V. M. Levchuk, O. A. Starikova, “Quadratic forms of projective spaces over rings”, Sb. Math., 197:6 (2006), 887–899
Citation in format AMSBIB
\Bibitem{LevSta06}
\by V.~M.~Levchuk, O.~A.~Starikova
\paper Quadratic forms of projective spaces over rings
\jour Sb. Math.
\yr 2006
\vol 197
\issue 6
\pages 887--899
\mathnet{http://mi.mathnet.ru/eng/sm1570}
\crossref{https://doi.org/10.1070/SM2006v197n06ABEH003782}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2477283}
\zmath{https://zbmath.org/?q=an:1156.11016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240354900010}
\elib{https://elibrary.ru/item.asp?id=17309849}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748869473}
Linking options:
  • https://www.mathnet.ru/eng/sm1570
  • https://doi.org/10.1070/SM2006v197n06ABEH003782
  • https://www.mathnet.ru/eng/sm/v197/i6/p97
  • This publication is cited in the following 11 articles:
    1. O. A. Starikova, “Perechislenie proektivno kongruentnykh simmetrichnykh matrits”, Vestnik rossiiskikh universitetov. Matematika, 24:126 (2019), 204–210  mathnet  crossref  elib
    2. Cruickshank J., Quinlan R., Szechtman F., “Hermitian and Skew Hermitian Forms Over Local Rings”, Linear Alg. Appl., 551 (2018), 147–161  crossref  mathscinet  zmath  isi  scopus
    3. GEORGY P. EGORYCHEV, FERIDE KUZUCUOĞLU, VLADIMIR M. LEVCHUK, “ENUMERATION OF IDEALS OF SOME NILPOTENT MATRIX RINGS”, J. Algebra Appl, 12:01 (2013), 1250140  crossref  mathscinet  zmath  isi
    4. O. A. Starikova, “Classes of projectively equivalent quadrics over local rings”, Discrete Math. Appl., 23:3-4 (2013), 385–398  mathnet  crossref  crossref  mathscinet  elib  elib
    5. O. A. Starikova, “Quadratic forms and quadrics of space over local rings”, J. Math. Sci., 187:2 (2012), 177–186  mathnet  crossref
    6. O. A. Starikova, A. V. Svistunova, “Enumeration of quadrics of projective spaces over local rings”, Russian Math. (Iz. VUZ), 55:12 (2011), 48–51  mathnet  crossref  mathscinet
    7. Starikova O.A., “Kvadriki proektivnoi ploskosti nad lokalnym koltsom s dvuporozhdennym maksimalnym idealom”, Vestn. Severo-Vostochnogo gos. un-ta, 15:15 (2011), 102–107  elib
    8. Olga A. Starikova, “Simmetrichnye formy nad polulokalnymi koltsami”, Zhurn. SFU. Ser. Matem. i fiz., 2:1 (2009), 116–121  mathnet  elib
    9. Cao Yonglin, Szechtman F., “Congruence of symmetric matrices over local rings”, Linear Algebra Appl., 431:9 (2009), 1687–1690  crossref  mathscinet  zmath  isi  elib
    10. Egorychev G.P., Zima E.V., “Simple formulae for the number of quadrics and symmetric forms of modules over local rings”, Comm. Algebra, 36:4 (2008), 1426–1436  crossref  mathscinet  zmath  isi  elib
    11. V. M. Levchuk, O. A. Starikova, “A normal form and schemes of quadratic forms”, J. Math. Sci., 152:4 (2008), 558–570  mathnet  crossref  mathscinet  zmath  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:707
    Russian version PDF:310
    English version PDF:30
    References:64
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025