Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 6, Pages 887–899
DOI: https://doi.org/10.1070/SM2006v197n06ABEH003782
(Mi sm1570)
 

This article is cited in 11 scientific papers (total in 11 papers)

Quadratic forms of projective spaces over rings

V. M. Levchuka, O. A. Starikovab

a Krasnoyarsk State University
b Northern International University
References:
Abstract: In the passage from fields to rings of coefficients quadratic forms with invertible matrices lose their decisive role. It turns out that if all quadratic forms over a ring are diagonalizable, then in effect this is always a local principal ideal ring $R$ with $2\in R^*$. The problem of the construction of a ‘normal’ diagonal form of a quadratic form over a ring $R$ faces obstacles in the case of indices $|R^*:R^{*2}|$ greater than 1. In the case of index 2 this problem has a solution given in Theorem 2.1 for $1+R^{*2}\subseteq R^{*2}$ (an extension of the law of inertia for real quadratic forms) and in Theorem 2.2 for $1+R^2$ containing an invertible non-square. Under the same conditions on a ring $R$ with nilpotent maximal ideal the number of classes of projectively congruent quadratic forms of the projective space associated with a free $R$-module of rank $n$ is explicitly calculated (Proposition 3.2). Up to projectivities, the list of forms is presented for the projective plane over $R$ and also (Theorem 3.3) over the local ring $F[[x,y]]/\langle x^{2},xy,y^{2}\rangle$ with non-principal maximal ideal, where $F=2F$ is a field with an invertible non-square in $1+F^{2}$ and $|F^{*}:F^{*2}|=2$. In the latter case the number of classes of non-diagonalizable quadratic forms of rank 0 depends on one's choice of the field $F$ and is not even always finite; all the other forms make up 21 classes.
Bibliography: 28 titles.
Received: 04.10.2004 and 18.04.2005
Bibliographic databases:
UDC: 512.7
MSC: Primary 15A63; Secondary 10C05
Language: English
Original paper language: Russian
Citation: V. M. Levchuk, O. A. Starikova, “Quadratic forms of projective spaces over rings”, Sb. Math., 197:6 (2006), 887–899
Citation in format AMSBIB
\Bibitem{LevSta06}
\by V.~M.~Levchuk, O.~A.~Starikova
\paper Quadratic forms of projective spaces over rings
\jour Sb. Math.
\yr 2006
\vol 197
\issue 6
\pages 887--899
\mathnet{http://mi.mathnet.ru//eng/sm1570}
\crossref{https://doi.org/10.1070/SM2006v197n06ABEH003782}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2477283}
\zmath{https://zbmath.org/?q=an:1156.11016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240354900010}
\elib{https://elibrary.ru/item.asp?id=17309849}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748869473}
Linking options:
  • https://www.mathnet.ru/eng/sm1570
  • https://doi.org/10.1070/SM2006v197n06ABEH003782
  • https://www.mathnet.ru/eng/sm/v197/i6/p97
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024