Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 5, Pages 753–790
DOI: https://doi.org/10.1070/SM2006v197n05ABEH003777
(Mi sm1561)
 

This article is cited in 6 scientific papers (total in 6 papers)

Asymptotic behaviour of supports of solutions of quasilinear many-dimensionsal parabolic equations of non-stationary diffusion-convection type

D. A. Sapronova, A. E. Shishkovb

a Donetsk National University
b Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences
References:
Abstract: We study the phenomenon of the finiteness of the rate of propagation of the supports of generalized energy solutions of mixed problems for a broad class of doubly degenerate parabolic equations of high order; a model example here is the equation
$$ (|u|^{q-1}u)_t+(-1)^m \sum_{|\alpha|=m} D_x^\alpha(|D_x^\alpha u|^{p-1} D_x^\alpha u)+(|u|^{\lambda-1}u)_{x_1}=0, $$
$m \geqslant 1$, $p>0$, $q>0$, $\lambda>0$.
Bounds (that are sharp in a certain sense) for the early evolution of the supports of solutions (in particular, of the ‘right’ and the ‘left’ fronts of the solutions), which depend on local properties of the initial function and the parameters of the equation, are established. The behaviour of the supports for large times is also studied.
Bibliography: 31 titles.
Received: 04.01.2003 and 13.05.2005
Bibliographic databases:
UDC: 517.9
MSC: Primary 35K55, 35B05; Secondary 35K30, 35K35
Language: English
Original paper language: Russian
Citation: D. A. Sapronov, A. E. Shishkov, “Asymptotic behaviour of supports of solutions of quasilinear many-dimensionsal parabolic equations of non-stationary diffusion-convection type”, Sb. Math., 197:5 (2006), 753–790
Citation in format AMSBIB
\Bibitem{SapShi06}
\by D.~A.~Sapronov, A.~E.~Shishkov
\paper Asymptotic behaviour of supports of solutions of
quasilinear many-dimensionsal parabolic equations of
non-stationary diffusion-convection type
\jour Sb. Math.
\yr 2006
\vol 197
\issue 5
\pages 753--790
\mathnet{http://mi.mathnet.ru//eng/sm1561}
\crossref{https://doi.org/10.1070/SM2006v197n05ABEH003777}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2264331}
\zmath{https://zbmath.org/?q=an:1165.35309}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240354900005}
\elib{https://elibrary.ru/item.asp?id=9200281}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748805272}
Linking options:
  • https://www.mathnet.ru/eng/sm1561
  • https://doi.org/10.1070/SM2006v197n05ABEH003777
  • https://www.mathnet.ru/eng/sm/v197/i5/p125
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024