Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 4, Pages 547–593
DOI: https://doi.org/10.1070/SM2006v197n04ABEH003770
(Mi sm1547)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the topological classification of Lorenz-type attractors

N. É. Klinshpont
References:
Abstract: A generalization is considered of Williams's well-known model of the attractor in the Lorenz system, the inverse limit of semiflows on branched manifolds that are suspensions over a discontinuous expanding map of a closed line interval. The generalization consists in the consideration of maps with several, rather than one, discontinuity points. A cardinal-valued topological invariant L-manuscript is constructed, which distinguishes a continuum of non-homeomorphic generalized models. A topological invariant distinguishing a continuum of non-homeomorphic geometric Lorenz attractors is obtained as a consequence.
Bibliography: 16 titles.
Received: 02.07.2004 and 27.10.2005
Russian version:
Matematicheskii Sbornik, 2006, Volume 197, Number 4, Pages 75–122
DOI: https://doi.org/10.4213/sm1547
Bibliographic databases:
UDC: 517.938.5
MSC: Primary 58F12, 58F13; Secondary 54H20
Language: English
Original paper language: Russian
Citation: N. É. Klinshpont, “On the topological classification of Lorenz-type attractors”, Mat. Sb., 197:4 (2006), 75–122; Sb. Math., 197:4 (2006), 547–593
Citation in format AMSBIB
\Bibitem{Kli06}
\by N.~\'E.~Klinshpont
\paper On the topological classification of Lorenz-type attractors
\jour Mat. Sb.
\yr 2006
\vol 197
\issue 4
\pages 75--122
\mathnet{http://mi.mathnet.ru/sm1547}
\crossref{https://doi.org/10.4213/sm1547}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2263790}
\zmath{https://zbmath.org/?q=an:1147.37016}
\elib{https://elibrary.ru/item.asp?id=9195180}
\transl
\jour Sb. Math.
\yr 2006
\vol 197
\issue 4
\pages 547--593
\crossref{https://doi.org/10.1070/SM2006v197n04ABEH003770}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000239727500012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747064998}
Linking options:
  • https://www.mathnet.ru/eng/sm1547
  • https://doi.org/10.1070/SM2006v197n04ABEH003770
  • https://www.mathnet.ru/eng/sm/v197/i4/p75
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:456
    Russian version PDF:253
    English version PDF:5
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024