Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1996, Volume 187, Issue 8, Pages 1229–1260
DOI: https://doi.org/10.1070/SM1996v187n08ABEH000154
(Mi sm154)
 

This article is cited in 21 scientific papers (total in 21 papers)

Homogenization of non-linear Dirichlet problems in perforated domains of general type

I. V. Skrypnik

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences
References:
Abstract: A sequence of boundary-value problems for a second-order non-linear elliptic equation in domains $\Omega_s\subset\Omega\subset\mathbb R^n$ and $s=1,2,\dots$ is considered. No geometric assumptions on the $\Omega_s$ are made. The existence of a sequence $r_s$ approaching zero as $s\to\infty$ is assumed such that $C_m\bigl(K(x_0,r)\setminus \Omega_s\bigr)\leqslant Ar^n$ for $r\geqslant r_s>0$ and for an arbitrary point $x_0\in\Omega$. Here $K(x_0,r)$ is the $2r$-cube with centre at $x_0$ and $C_m$ is the $m$-capacity. The conditions imposed on the coefficients of the equation ensure that the energy space is $W_m^1$. The strong convergence of the solutions $u_s(x)$ of the problems under consideration is proved in $W_p^1$ for $p<m$; a corrector in $W_m^1$ and a homogenized boundary-value problem are constructed. These results are based on an asymptotic expansion for the sequence $u_s(x)$ and on a new pointwise estimate of the solution of a certain model non-linear problem.
Received: 05.10.1995
Bibliographic databases:
UDC: 517.953
MSC: Primary 35B27, 35J65; Secondary 35C20
Language: English
Original paper language: Russian
Citation: I. V. Skrypnik, “Homogenization of non-linear Dirichlet problems in perforated domains of general type”, Sb. Math., 187:8 (1996), 1229–1260
Citation in format AMSBIB
\Bibitem{Skr96}
\by I.~V.~Skrypnik
\paper Homogenization of non-linear Dirichlet problems in perforated domains of general type
\jour Sb. Math.
\yr 1996
\vol 187
\issue 8
\pages 1229--1260
\mathnet{http://mi.mathnet.ru//eng/sm154}
\crossref{https://doi.org/10.1070/SM1996v187n08ABEH000154}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1418344}
\zmath{https://zbmath.org/?q=an:0874.35012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VW99300013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030305559}
Linking options:
  • https://www.mathnet.ru/eng/sm154
  • https://doi.org/10.1070/SM1996v187n08ABEH000154
  • https://www.mathnet.ru/eng/sm/v187/i8/p125
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024