Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 2, Pages 193–211
DOI: https://doi.org/10.1070/SM2006v197n02ABEH003753
(Mi sm1511)
 

Weighted estimates for tangential boundary behaviour

V. G. Krotov, L. V. Smovzh

Belarusian State University, Faculty of Mathematics and Mechanics
References:
Abstract: Let $(X,\mu,d)$ be a space of homogeneous type (here $d$ is a quasimetric and $\mu$ a measure). A function $\varepsilon$ of modulus of continuity kind gives rise to approach regions $\Gamma_{\varepsilon}(x)$ at the boundary of $\mathbf{X}$, $\mathbf{X}=X\times[0,1)$, where for a point $x\in X$,
$$ \Gamma_{\varepsilon}(x)=\{(y,t)\in\mathbf{X}:d(x,y)<\varepsilon(1-t)\}. $$
These are ‘tangential’ regions if $\lim_{t\to+0}\varepsilon(t)/t=\infty$.
Weighted $L^p$-estimates are proved for the corresponding maximal functions of integral operators. Applications of these estimates to potentials in $\mathbb{R}^n$ and to multipliers of homogeneous expansions of holomorphic functions in the Hardy classes in the unit ball of $\mathbb{C}^n$ are presented.
Bibliography: 20 titles.
Keywords: space of homogeneous type, tangential boundary behaviour, weighted inequalities.
Received: 30.01.2006
Bibliographic databases:
UDC: 517.5
MSC: Primary 31B25; Secondary 46E35
Language: English
Original paper language: Russian
Citation: V. G. Krotov, L. V. Smovzh, “Weighted estimates for tangential boundary behaviour”, Sb. Math., 197:2 (2006), 193–211
Citation in format AMSBIB
\Bibitem{KroSmo06}
\by V.~G.~Krotov, L.~V.~Smovzh
\paper Weighted estimates for tangential boundary behaviour
\jour Sb. Math.
\yr 2006
\vol 197
\issue 2
\pages 193--211
\mathnet{http://mi.mathnet.ru//eng/sm1511}
\crossref{https://doi.org/10.1070/SM2006v197n02ABEH003753}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2230090}
\zmath{https://zbmath.org/?q=an:1145.31003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000237780600011}
\elib{https://elibrary.ru/item.asp?id=9200271}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33744776268}
Linking options:
  • https://www.mathnet.ru/eng/sm1511
  • https://doi.org/10.1070/SM2006v197n02ABEH003753
  • https://www.mathnet.ru/eng/sm/v197/i2/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:505
    Russian version PDF:195
    English version PDF:6
    References:57
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024