Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1995, Volume 186, Issue 2, Pages 257–269
DOI: https://doi.org/10.1070/SM1995v186n02ABEH000015
(Mi sm15)
 

This article is cited in 6 scientific papers (total in 6 papers)

Multidimensional analogue of a theorem of Privalov

V. A. Okulov

M. V. Lomonosov Moscow State University
References:
Abstract: A criterion is established for the continuity of functions that are conjugate in the sense of Cesari to a given function in the class
$$ H\bigl(\omega_j(\delta),j\in B,T^N\bigr)=\bigl\{f\in C(T^N):\omega_j(f,\delta) =O[\omega_j(\delta)],\ j\in B\bigr\}, $$
where $B\subseteq M=\{1,\dots,N\}$, $T^N=(-\pi,\pi )^N$, $\omega_j(f,\delta)$ ($1\leqslant j\leqslant N$) are the partial moduli of continuity of $f(\bar x)$ and $\omega_j(\delta)$ ($j\in B$) are moduli of continuity. Best possible estimates of the partial modulus of continuity of a function conjugate to $f\in H(\omega _j,j\in M,T^N)$ are obtained in the case when the $\omega_j(\delta)$ ($j\in M$) satisfy two specific conditions. These conditions on the modulus of continuity $\omega(\delta)$ are shown to be necessary and sufficient in order that the conjugation operator violate the invariance of the class $H$ $(\omega_j=\omega,j\in M,T^N)$ in the same way as it violates that of $\operatorname{Lip}\bigl(\alpha,C(T^N)\bigr)$ ($0<\alpha<1$).
Received: 06.06.1994
Russian version:
Matematicheskii Sbornik, 1995, Volume 186, Number 2, Pages 93–104
Bibliographic databases:
UDC: 517.518.475
MSC: 42B20
Language: English
Original paper language: Russian
Citation: V. A. Okulov, “Multidimensional analogue of a theorem of Privalov”, Mat. Sb., 186:2 (1995), 93–104; Sb. Math., 186:2 (1995), 257–269
Citation in format AMSBIB
\Bibitem{Oku95}
\by V.~A.~Okulov
\paper Multidimensional analogue of a~theorem of Privalov
\jour Mat. Sb.
\yr 1995
\vol 186
\issue 2
\pages 93--104
\mathnet{http://mi.mathnet.ru/sm15}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1330592}
\zmath{https://zbmath.org/?q=an:0847.42010}
\transl
\jour Sb. Math.
\yr 1995
\vol 186
\issue 2
\pages 257--269
\crossref{https://doi.org/10.1070/SM1995v186n02ABEH000015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ91900015}
Linking options:
  • https://www.mathnet.ru/eng/sm15
  • https://doi.org/10.1070/SM1995v186n02ABEH000015
  • https://www.mathnet.ru/eng/sm/v186/i2/p93
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:454
    Russian version PDF:118
    English version PDF:19
    References:66
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024