Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 9, Pages 1353–1364
DOI: https://doi.org/10.1070/SM2006v197n09ABEH003802
(Mi sm1492)
 

This article is cited in 4 scientific papers (total in 4 papers)

Best approximation problems relating to Monge–Kantorovich duality

V. L. Levin

Central Economics and Mathematics Institute, RAS
References:
Abstract: Problems of the best approximation of bounded continuous functions on a topological space $X\times X$ by functions of the form $u(x)-u(y)$ are considered. Formulae for the values of the best approximations are obtained and the equivalence between the existence of precise solutions and the non-emptiness of the constraint set of the auxiliary dual Monge–Kantorovich problem with a special cost function is established. The form of precise solutions is described in terms relating to the Monge–Kantorovich duality, and for several classes of approximated functions the existence of precise solutions with additional properties, such as smoothness and periodicity, is proved.
Bibliography: 20 titles.
Received: 12.01.2006
Russian version:
Matematicheskii Sbornik, 2006, Volume 197, Number 9, Pages 103–114
DOI: https://doi.org/10.4213/sm1492
Bibliographic databases:
UDC: 517.972.8
MSC: 41A50, 49N15
Language: English
Original paper language: Russian
Citation: V. L. Levin, “Best approximation problems relating to Monge–Kantorovich duality”, Mat. Sb., 197:9 (2006), 103–114; Sb. Math., 197:9 (2006), 1353–1364
Citation in format AMSBIB
\Bibitem{Lev06}
\by V.~L.~Levin
\paper Best approximation problems
relating to Monge--Kantorovich duality
\jour Mat. Sb.
\yr 2006
\vol 197
\issue 9
\pages 103--114
\mathnet{http://mi.mathnet.ru/sm1492}
\crossref{https://doi.org/10.4213/sm1492}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2273170}
\zmath{https://zbmath.org/?q=an:1151.41019}
\elib{https://elibrary.ru/item.asp?id=9277055}
\transl
\jour Sb. Math.
\yr 2006
\vol 197
\issue 9
\pages 1353--1364
\crossref{https://doi.org/10.1070/SM2006v197n09ABEH003802}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243495000006}
\elib{https://elibrary.ru/item.asp?id=13769853}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846495786}
Linking options:
  • https://www.mathnet.ru/eng/sm1492
  • https://doi.org/10.1070/SM2006v197n09ABEH003802
  • https://www.mathnet.ru/eng/sm/v197/i9/p103
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:575
    Russian version PDF:246
    English version PDF:16
    References:80
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024