Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2007, Volume 198, Issue 3, Pages 383–424
DOI: https://doi.org/10.1070/SM2007v198n03ABEH003841
(Mi sm1484)
 

This article is cited in 14 scientific papers (total in 15 papers)

Fractional monodromy in the case of arbitrary resonances

N. N. Nekhoroshevab

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b University of Milan
References:
Abstract: The existence of fractional monodromy is proved for the compact Lagrangian fibration on a symplectic 4-manifold that corresponds to two oscillators with arbitrary non-trivial resonant frequencies. Here one means by the monodromy corresponding to a loop in the total space of the fibration the transformation of the fundamental group of a regular fibre, which is diffeomorphic to the 2-torus. In the example under consideration the fibration is defined by a pair of functions in involution, one of which is the Hamiltonian of the system of two oscillators with frequency ratio $m_1:(-m_2)$, where $m_1$, $m_2$ are arbitrary coprime positive integers distinct from the trivial pair $m_1=m_2=1$. This is a generalization of the result on the existence of fractional monodromy in the case $m_1=1$, $m_2=2$ published before.
Bibliography: 39 titles.
Received: 22.12.2005
Bibliographic databases:
UDC: 514.7+517.925
MSC: 37J35, 58K10
Language: English
Original paper language: Russian
Citation: N. N. Nekhoroshev, “Fractional monodromy in the case of arbitrary resonances”, Sb. Math., 198:3 (2007), 383–424
Citation in format AMSBIB
\Bibitem{Nek07}
\by N.~N.~Nekhoroshev
\paper Fractional monodromy in the case of arbitrary
resonances
\jour Sb. Math.
\yr 2007
\vol 198
\issue 3
\pages 383--424
\mathnet{http://mi.mathnet.ru//eng/sm1484}
\crossref{https://doi.org/10.1070/SM2007v198n03ABEH003841}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2354281}
\zmath{https://zbmath.org/?q=an:1147.53063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000247946700004}
\elib{https://elibrary.ru/item.asp?id=9469182}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34547839545}
Linking options:
  • https://www.mathnet.ru/eng/sm1484
  • https://doi.org/10.1070/SM2007v198n03ABEH003841
  • https://www.mathnet.ru/eng/sm/v198/i3/p91
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:676
    Russian version PDF:176
    English version PDF:24
    References:91
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024