Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 10, Pages 1467–1487
DOI: https://doi.org/10.1070/SM2006v197n10ABEH003808
(Mi sm1433)
 

This article is cited in 22 scientific papers (total in 22 papers)

Basis properties of a spectral problem with spectral parameter in the boundary condition

N. B. Kerimova, Z. S. Aliyevb

a Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
b Baku State University
References:
Abstract: The following boundary-value problem is considered:
\begin{gather*} y^{(4)}(x)-(q(x){y'}(x))'=\lambda y(x),\qquad 0<x<l, \\ y(0)=y'(0)=y''(l)=0, \qquad (a\lambda+b)y(l)=(c\lambda+d)Ty(l), \end{gather*}
where $\lambda$ is the spectral parameter; $Ty\equiv y'''-qy'$; $q(x)$ is a strictly positive absolutely continuous function on $[0,l]$; $a$, $b$, $c$, and $d$ are real constants such that $bc-ad>0$. The oscillation properties of eigenfunctions are studied and asymptotic formulae for eigenvalues and eigenfunctions are deduced. The basis properties in $L_p(0,l)$, $1<p<\infty$, of the system of eigenfunctions are investigated.
Bibliography: 20 titles.
Received: 01.11.2005 and 31.05.2006
Russian version:
Matematicheskii Sbornik, 2006, Volume 197, Number 10, Pages 65–86
DOI: https://doi.org/10.4213/sm1433
Bibliographic databases:
UDC: 517.927.25
MSC: 34L10
Language: English
Original paper language: Russian
Citation: N. B. Kerimov, Z. S. Aliyev, “Basis properties of a spectral problem with spectral parameter in the boundary condition”, Mat. Sb., 197:10 (2006), 65–86; Sb. Math., 197:10 (2006), 1467–1487
Citation in format AMSBIB
\Bibitem{KerAli06}
\by N.~B.~Kerimov, Z.~S.~Aliyev
\paper Basis properties of a spectral
problem with spectral parameter in the boundary condition
\jour Mat. Sb.
\yr 2006
\vol 197
\issue 10
\pages 65--86
\mathnet{http://mi.mathnet.ru/sm1433}
\crossref{https://doi.org/10.4213/sm1433}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2310116}
\zmath{https://zbmath.org/?q=an:1149.34353}
\elib{https://elibrary.ru/item.asp?id=9296531}
\transl
\jour Sb. Math.
\yr 2006
\vol 197
\issue 10
\pages 1467--1487
\crossref{https://doi.org/10.1070/SM2006v197n10ABEH003808}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243495000012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846468496}
Linking options:
  • https://www.mathnet.ru/eng/sm1433
  • https://doi.org/10.1070/SM2006v197n10ABEH003808
  • https://www.mathnet.ru/eng/sm/v197/i10/p65
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1071
    Russian version PDF:369
    English version PDF:32
    References:91
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024