|
This article is cited in 15 scientific papers (total in 15 papers)
Stabilization of a solution of the first mixed problem for a quasi-elliptic evolution equation
L. M. Kozhevnikova Sterlitamak State Pedagogical Institute
Abstract:
In a cylindrical domain $D=(0,\infty)\times\Omega$, where $\Omega$ is an unbounded subdomain of $\mathbb R_{n+1}$, one considers the first mixed problem for a higher order equation
\begin{gather*}
u_t+Lu=0,
\\
Lu\equiv\sum_{i=q}^k(-1)^iD_x^i(a_i(x,{\mathbf y})D_x^iu)+
\sum_{i=l}^m\,\sum_{|\alpha|=|\beta|=i}(-1)^i
D_{\mathbf y}^\alpha(b_{\alpha\beta}(x,{\mathbf y})D_{\mathbf y}^\beta u),
\\
q\leqslant k,\quad l\leqslant m,\quad q,k,l,m\in\mathbb N,\quad x\in\mathbb R,\quad
\mathbf y\in\mathbb R_n,
\end{gather*}
with homogeneous boundary conditions and compactly supported initial function. A new method of obtaining an upper estimate of the $L_2$-norm $\|u(t)\|$ of the solution of this problem is put forward, which works in a broad class of domains and equations. In particular, in domains $\{(x,{\mathbf y})\in\mathbb R_{n+1}:|y_1|<x^a\}$, $0<a<q/l$, for the operator $L$ with symbol satisfying a certain condition this estimate takes the following form:
$$
\|u(t)\|\leqslant M\exp(-\kappa_2t^b)\|\varphi\|,\qquad
b=\frac{q-{la}}{q-{la}+2laq}\,.
$$
The estimate is shown to be sharp in a broad class of unbounded domains for $q=k=l=m=1$, that is, for second-order parabolic equations.
Received: 25.10.2004
Citation:
L. M. Kozhevnikova, “Stabilization of a solution of the first mixed problem for a quasi-elliptic evolution equation”, Sb. Math., 196:7 (2005), 999–1032
Linking options:
https://www.mathnet.ru/eng/sm1377https://doi.org/10.1070/SM2005v196n07ABEH000946 https://www.mathnet.ru/eng/sm/v196/i7/p67
|
Statistics & downloads: |
Abstract page: | 801 | Russian version PDF: | 233 | English version PDF: | 34 | References: | 65 | First page: | 2 |
|