Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2005, Volume 196, Issue 7, Pages 999–1032
DOI: https://doi.org/10.1070/SM2005v196n07ABEH000946
(Mi sm1377)
 

This article is cited in 15 scientific papers (total in 15 papers)

Stabilization of a solution of the first mixed problem for a quasi-elliptic evolution equation

L. M. Kozhevnikova

Sterlitamak State Pedagogical Institute
References:
Abstract: In a cylindrical domain $D=(0,\infty)\times\Omega$, where $\Omega$ is an unbounded subdomain of $\mathbb R_{n+1}$, one considers the first mixed problem for a higher order equation
\begin{gather*} u_t+Lu=0, \\ Lu\equiv\sum_{i=q}^k(-1)^iD_x^i(a_i(x,{\mathbf y})D_x^iu)+ \sum_{i=l}^m\,\sum_{|\alpha|=|\beta|=i}(-1)^i D_{\mathbf y}^\alpha(b_{\alpha\beta}(x,{\mathbf y})D_{\mathbf y}^\beta u), \\ q\leqslant k,\quad l\leqslant m,\quad q,k,l,m\in\mathbb N,\quad x\in\mathbb R,\quad \mathbf y\in\mathbb R_n, \end{gather*}
with homogeneous boundary conditions and compactly supported initial function. A new method of obtaining an upper estimate of the $L_2$-norm $\|u(t)\|$ of the solution of this problem is put forward, which works in a broad class of domains and equations. In particular, in domains $\{(x,{\mathbf y})\in\mathbb R_{n+1}:|y_1|<x^a\}$, $0<a<q/l$, for the operator $L$ with symbol satisfying a certain condition this estimate takes the following form:
$$ \|u(t)\|\leqslant M\exp(-\kappa_2t^b)\|\varphi\|,\qquad b=\frac{q-{la}}{q-{la}+2laq}\,. $$
The estimate is shown to be sharp in a broad class of unbounded domains for $q=k=l=m=1$, that is, for second-order parabolic equations.
Received: 25.10.2004
Bibliographic databases:
UDC: 517.956.4
MSC: 35K35, 35B35, 35B40
Language: English
Original paper language: Russian
Citation: L. M. Kozhevnikova, “Stabilization of a solution of the first mixed problem for a quasi-elliptic evolution equation”, Sb. Math., 196:7 (2005), 999–1032
Citation in format AMSBIB
\Bibitem{Koz05}
\by L.~M.~Kozhevnikova
\paper Stabilization of a~solution of the first mixed problem for a~quasi-elliptic evolution equation
\jour Sb. Math.
\yr 2005
\vol 196
\issue 7
\pages 999--1032
\mathnet{http://mi.mathnet.ru//eng/sm1377}
\crossref{https://doi.org/10.1070/SM2005v196n07ABEH000946}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2188370}
\zmath{https://zbmath.org/?q=an:1085.35050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232881000004}
\elib{https://elibrary.ru/item.asp?id=9148945}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27844439520}
Linking options:
  • https://www.mathnet.ru/eng/sm1377
  • https://doi.org/10.1070/SM2005v196n07ABEH000946
  • https://www.mathnet.ru/eng/sm/v196/i7/p67
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:801
    Russian version PDF:233
    English version PDF:34
    References:65
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024