Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2005, Volume 196, Issue 6, Pages 791–815
DOI: https://doi.org/10.1070/SM2005v196n06ABEH000901
(Mi sm1363)
 

This article is cited in 20 scientific papers (total in 20 papers)

Non-autonomous Ginzburg–Landau equation and its attractors

M. I. Vishik, V. V. Chepyzhov

Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: The behaviour as $t\to+\infty$ of solutions $\{u(x,t),\ t\geqslant0\}$ of the non-autonomous Ginzburg–Landau (G.–L.) equation is studied. The main attention is focused on the case when the dispersion coefficient $\beta(t)$ in this equation satisfies the inequality $|\beta(t)|>\sqrt3$ for $t\in L$, where $L$ is an unbounded subset of $\mathbb R_+$. In this case the uniqueness theorem for the G.–L. equation is not proved. The trajectory attractor $\mathfrak A$ for this equation is constructed.
If the coefficients and the exciting force are almost periodic (a.p.) in time and the uniqueness condition fails, then the trajectory attractor $\mathfrak A$ is proved to consist precisely of the solutions $\{u(x,t),\ t\geqslant0\}$ of the G.-L. equation that admit a bounded extension as solutions of this equation onto the entire time axis $\mathbb R$.
The behaviour as $t\to+\infty$ of solutions of a perturbed G.–L. equation with coefficients and the exciting force that are sums of a.p. functions and functions approaching zero in the weak sense as $t\to+\infty$ is also studied.
Received: 15.10.2004
Bibliographic databases:
UDC: 517.956
Language: English
Original paper language: Russian
Citation: M. I. Vishik, V. V. Chepyzhov, “Non-autonomous Ginzburg–Landau equation and its attractors”, Sb. Math., 196:6 (2005), 791–815
Citation in format AMSBIB
\Bibitem{VisChe05}
\by M.~I.~Vishik, V.~V.~Chepyzhov
\paper Non-autonomous Ginzburg--Landau equation and its attractors
\jour Sb. Math.
\yr 2005
\vol 196
\issue 6
\pages 791--815
\mathnet{http://mi.mathnet.ru//eng/sm1363}
\crossref{https://doi.org/10.1070/SM2005v196n06ABEH000901}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2164550}
\zmath{https://zbmath.org/?q=an:1105.35121}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232539400008}
\elib{https://elibrary.ru/item.asp?id=9133012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27344448873}
Linking options:
  • https://www.mathnet.ru/eng/sm1363
  • https://doi.org/10.1070/SM2005v196n06ABEH000901
  • https://www.mathnet.ru/eng/sm/v196/i6/p17
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:755
    Russian version PDF:214
    English version PDF:61
    References:79
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024