Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1996, Volume 187, Issue 6, Pages 835–855
DOI: https://doi.org/10.1070/SM1996v187n06ABEH000136
(Mi sm136)
 

This article is cited in 9 scientific papers (total in 9 papers)

Division rings of quotients and central elements of multiparameter quantizations

V. G. Mosin, A. N. Panov

Samara State University
References:
Abstract: It is proved that the algebra of regular functions on quantum $m\times n$ matrices admits a division ring of quotients and that this division ring is a division ring of twisted rational functions. A description is given of the field of central elements in the division ring of rational functions on quantum $m\times n$ matrices in the one-parameter and multiparameter cases. In the one-parameter case for $q$ of a general form the center is a purely transcendental extension of a field $\mathbb K$ of degree $l$ (were $l$ is the greatest common divisor of $m$ and $n$) if both numbers $m/l$ and $n/l$ are odd. If at least one of the numbers $m/l$ and $n/l$ is even, then the center is scalar. In the multiparameter case the answer depends upon the parameters $P$,$Q$$c$. Here the generators of the center are described and it is proved that the center is scalar for the case of even $n$ and parameters of a general form. Analogous result are obtained for the division ring of rational functions on a quantum Borel subgroup of $GL_{P,Q,c}(n)$.
Received: 03.08.1995
Russian version:
Matematicheskii Sbornik, 1996, Volume 187, Number 6, Pages 53–72
DOI: https://doi.org/10.4213/sm136
Bibliographic databases:
UDC: 512.66
MSC: Primary 17B37, 16S36, 16K30; Secondary 16W30, 16S30, 16S80, 16U70
Language: English
Original paper language: Russian
Citation: V. G. Mosin, A. N. Panov, “Division rings of quotients and central elements of multiparameter quantizations”, Mat. Sb., 187:6 (1996), 53–72; Sb. Math., 187:6 (1996), 835–855
Citation in format AMSBIB
\Bibitem{MosPan96}
\by V.~G.~Mosin, A.~N.~Panov
\paper Division rings of quotients and central elements of multiparameter quantizations
\jour Mat. Sb.
\yr 1996
\vol 187
\issue 6
\pages 53--72
\mathnet{http://mi.mathnet.ru/sm136}
\crossref{https://doi.org/10.4213/sm136}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1407679}
\zmath{https://zbmath.org/?q=an:0881.16006}
\transl
\jour Sb. Math.
\yr 1996
\vol 187
\issue 6
\pages 835--855
\crossref{https://doi.org/10.1070/SM1996v187n06ABEH000136}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VK60300012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030524738}
Linking options:
  • https://www.mathnet.ru/eng/sm136
  • https://doi.org/10.1070/SM1996v187n06ABEH000136
  • https://www.mathnet.ru/eng/sm/v187/i6/p53
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:372
    Russian version PDF:182
    English version PDF:15
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024