Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1992, Volume 73, Issue 2, Pages 379–392
DOI: https://doi.org/10.1070/SM1992v073n02ABEH002551
(Mi sm1338)
 

Multiplicative inequalities for derivatives, and a priori estimates of smoothness of solutions of nonlinear differential equations

V. E. Maiorov
References:
Abstract: Inequalities of the following form are proved: if $x\in C^n[a,b]$ is an arbitrary function and $r=(\alpha_1\cdot1+\dots+\alpha_n\cdot n)/(\alpha_0+\dots+\alpha_n)$, then
$$ \|x^{(r)}\|_C\leqslant c\bigl\||x|^{\alpha_0}|x'|^{\alpha_1}\cdot\ldots\cdot|x^{(n)}|^{\alpha_n}\bigr\|_C, $$
where $c$ depends only on $\alpha_0,\dots,\alpha_n$. The exponent $r$ is a limiting exponent. With the inequalities as a basis, imbedding theorems are constructed for classes of solutions of nonlinear singular differential equations in the space of $r$ times differentiable functions.
Received: 02.02.1990
Bibliographic databases:
UDC: 517.5
MSC: 26D10, 34A34
Language: English
Original paper language: Russian
Citation: V. E. Maiorov, “Multiplicative inequalities for derivatives, and a priori estimates of smoothness of solutions of nonlinear differential equations”, Math. USSR-Sb., 73:2 (1992), 379–392
Citation in format AMSBIB
\Bibitem{Mai91}
\by V.~E.~Maiorov
\paper Multiplicative inequalities for derivatives, and a~priori estimates of smoothness of solutions of nonlinear differential equations
\jour Math. USSR-Sb.
\yr 1992
\vol 73
\issue 2
\pages 379--392
\mathnet{http://mi.mathnet.ru//eng/sm1338}
\crossref{https://doi.org/10.1070/SM1992v073n02ABEH002551}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1128256}
\zmath{https://zbmath.org/?q=an:0774.34004|0739.34030}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1992SbMat..73..379M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992KF43400005}
Linking options:
  • https://www.mathnet.ru/eng/sm1338
  • https://doi.org/10.1070/SM1992v073n02ABEH002551
  • https://www.mathnet.ru/eng/sm/v182/i7/p1009
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1991 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024