Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 8, Pages 1223–1258
DOI: https://doi.org/10.1070/SM2006v197n08ABEH003796
(Mi sm1331)
 

This article is cited in 4 scientific papers (total in 4 papers)

Hyperbolic Monge–Ampère systems

D. V. Tunitsky

Institute of Control Sciences, Russian Academy of Sciences
References:
Abstract: The subject of the paper is the solubility of the Cauchy problem for strictly hyperbolic systems of Monge–Ampère equations and, in particular, for quasilinear systems of equations with two independent variables. It is proved that this problem has a unique maximal solution in the class of immersed many-valued solutions. Maximal many-valued solutions have the following characteristic property of completeness: either the characteristics of distinct families starting at two fixed points in the initial curve in the compatible directions intersect or the lengths of the characteristics in either family starting in the same direction from the interval of the initial curve connecting the fixed points make up an unbounded set. The completeness property is an analogue of the property that a non-extendable integral curve of an ordinary differential equation approaches the boundary of the definition domain of the equation.
Bibliography: 19 titles.
Received: 16.06.2005
Bibliographic databases:
UDC: 517.95
MSC: 35L70, 35L45
Language: English
Original paper language: Russian
Citation: D. V. Tunitsky, “Hyperbolic Monge–Ampère systems”, Sb. Math., 197:8 (2006), 1223–1258
Citation in format AMSBIB
\Bibitem{Tun06}
\by D.~V.~Tunitsky
\paper Hyperbolic Monge--Amp\`ere systems
\jour Sb. Math.
\yr 2006
\vol 197
\issue 8
\pages 1223--1258
\mathnet{http://mi.mathnet.ru//eng/sm1331}
\crossref{https://doi.org/10.1070/SM2006v197n08ABEH003796}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2272781}
\zmath{https://zbmath.org/?q=an:1165.35410}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241860100013}
\elib{https://elibrary.ru/item.asp?id=9277049}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33751041931}
Linking options:
  • https://www.mathnet.ru/eng/sm1331
  • https://doi.org/10.1070/SM2006v197n08ABEH003796
  • https://www.mathnet.ru/eng/sm/v197/i8/p119
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:451
    Russian version PDF:220
    English version PDF:15
    References:61
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024