Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1992, Volume 73, Issue 1, Pages 135–159
DOI: https://doi.org/10.1070/SM1992v073n01ABEH002538
(Mi sm1322)
 

This article is cited in 19 scientific papers (total in 19 papers)

The theorem on restriction of invariants, and nilpotent elements in $W_n$

A. A. Premet
References:
Abstract: The ring of invariant polynomial functions on the general algebra of Cartan type $W_n$ is described explicitly. It is assumed that the ground field is algebraically closed and its characteristic is greater than 2. This result is used to prove that the variety of nilpotent elements in $W_n$ is an irreducible complete intersection and contains an open orbit whose complement consists of singular points. Moreover, a criterion for orbits in $W_n$ to be closed is obtained, and it is proved that the action of the commutator subgroup of the automorphism group in $W_n$ is stable.
Received: 01.08.1990
Bibliographic databases:
UDC: 512.554
MSC: 17B50
Language: English
Original paper language: Russian
Citation: A. A. Premet, “The theorem on restriction of invariants, and nilpotent elements in $W_n$”, Math. USSR-Sb., 73:1 (1992), 135–159
Citation in format AMSBIB
\Bibitem{Pre91}
\by A.~A.~Premet
\paper The theorem on restriction of invariants, and nilpotent elements in~$W_n$
\jour Math. USSR-Sb.
\yr 1992
\vol 73
\issue 1
\pages 135--159
\mathnet{http://mi.mathnet.ru/eng/sm1322}
\crossref{https://doi.org/10.1070/SM1992v073n01ABEH002538}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1124106}
\zmath{https://zbmath.org/?q=an:0782.17012|0737.17006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1992SbMat..73..135P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992KA53500008}
Linking options:
  • https://www.mathnet.ru/eng/sm1322
  • https://doi.org/10.1070/SM1992v073n01ABEH002538
  • https://www.mathnet.ru/eng/sm/v182/i5/p746
  • This publication is cited in the following 19 articles:
    1. Hao Chang, Ke Ou, “On the Semisimple Orbits of Restricted Cartan Type Lie Algebras W, S and H”, Algebr Represent Theor, 26:2 (2023), 317  crossref
    2. Ke Ou, Bin Shu, Yu Feng Yao, “On Chevalley Restriction Theorem for Semi-reductive Algebraic Groups and Its Applications”, Acta. Math. Sin.-English Ser., 38:8 (2022), 1421  crossref
    3. Yufeng Yao, Kaiming Zhao, “Local properties of Jacobson-Witt algebras”, Journal of Algebra, 586 (2021), 1110  crossref
    4. Rolf Farnsteiner, “Commuting Varieties for Nilpotent Radicals”, Proceedings of the Edinburgh Mathematical Society, 62:2 (2019), 559  crossref
    5. Alexander Premet, David Stewart, “Classification of the maximal subalgebras of exceptional Lie algebras over fields of good characteristic”, J. Amer. Math. Soc., 32:4 (2019), 965  crossref
    6. Hao Chang, “Adjoint quotient maps for the restricted Lie algebrasWnandSn”, Communications in Algebra, 45:1 (2017), 47  crossref
    7. Yu-Feng Yao, Bin Shu, “Nilpotent orbits of certain simple Lie algebras over truncated polynomial rings”, Journal of Algebra, 458 (2016), 1  crossref
    8. Yu-Feng Yao, “On nilpotent commuting varieties of r-tuples in the Witt algebra”, Journal of Pure and Applied Algebra, 219:9 (2015), 4042  crossref  mathscinet  zmath
    9. Yu.F.eng Yao, Hao Chang, “Borel subalgebras of the Witt algebra”, Acta. Math. Sin.-English Ser, 31:8 (2015), 1348  crossref  mathscinet
    10. Yu-Feng Yao, Hao Chang, “The nilpotent commuting variety of the Witt algebra”, Journal of Pure and Applied Algebra, 2014  crossref  mathscinet
    11. SERGE SKRYABIN, “NILPOTENT ELEMENTS IN THE JACOBSON–WITT ALGEBRA OVER A FINITE FIELD”, Transformation Groups, 2014  crossref  mathscinet
    12. Hao Chang, Yu-Feng Yao, “On
      $${\mathbb{F}_q}$$
      F q -Rational Structure of Nilpotent Orbits in the Witt Algebra”, Results. Math, 2013  crossref  mathscinet
    13. MARTIN MYGIND, “ORBIT CLOSURES IN THE WITT ALGEBRA AND ITS DUAL SPACE”, J. Algebra Appl, 2013, 1350146  crossref  mathscinet
    14. Yu-Feng Yao, Bin Shu, “Nilpotent Orbits in the Witt AlgebraW1”, Communications in Algebra, 39:9 (2011), 3232  crossref  mathscinet
    15. Jean-Marie Bois, “Generators of simple Lie algebras II”, Forum Mathematicum, 22:3 (2010), 525  crossref  mathscinet  zmath
    16. Jean-Marie Bois, “Generators of simple Lie algebras in arbitrary characteristics”, Math Z, 2008  crossref  mathscinet  isi
    17. I. Bagci, J. R. Kujawa, D. K. Nakano, “Cohomology and Support Varieties for Lie Superalgebras of Type W(n)”, Internat Math Res Notices, 2008  crossref  mathscinet  isi
    18. Skryabin S., “Invariant Polynomial Functions on the Poisson Algebra in Characteristic P”, J. Algebra, 256:1 (2002), 146–179  crossref  mathscinet  zmath  isi
    19. Jörg Feldvoss, Daniel K. Nakano, “Representation Theory of the Witt Algebra”, Journal of Algebra, 203:2 (1998), 447  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1991 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:606
    Russian version PDF:143
    English version PDF:32
    References:80
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025