Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1992, Volume 72, Issue 2, Pages 287–310
DOI: https://doi.org/10.1070/SM1992v072n02ABEH002141
(Mi sm1296)
 

This article is cited in 37 scientific papers (total in 37 papers)

Boundary control and a matrix inverse problem for the equation $u_{tt}-u_{xx}+V(x)u=0$

S. A. Avdonin, M. I. Belishev, S. A. Ivanov
References:
Abstract: The authors solve the problem of recovering the matrix-valued potential $V(x)$, $x>0$, from the given reaction operator $R\colon u(0,t)\mapsto u_x(0,t)$, $t>0$. They show the connections between this problem and the theory of boundary control, which allows them to obtain analogues of the classical Gel'fand–Levitan–Krein equations. They establish the basis property for a family of vector-valued exponentials; this property is connected with the spectral characteristics of the boundary value problem. They prove the controllability of the corresponding system under a boundary control $u(0,t)=f(t)$.
Received: 15.01.1990
Russian version:
Matematicheskii Sbornik, 1991, Volume 182, Number 3, Pages 307–331
Bibliographic databases:
UDC: 517.9
MSC: Primary 35L20, 35B37; Secondary 35R30, 49N50, 34B24, 93B05
Language: English
Original paper language: Russian
Citation: S. A. Avdonin, M. I. Belishev, S. A. Ivanov, “Boundary control and a matrix inverse problem for the equation $u_{tt}-u_{xx}+V(x)u=0$”, Mat. Sb., 182:3 (1991), 307–331; Math. USSR-Sb., 72:2 (1992), 287–310
Citation in format AMSBIB
\Bibitem{AvdBelIva91}
\by S.~A.~Avdonin, M.~I.~Belishev, S.~A.~Ivanov
\paper Boundary control and a~matrix inverse problem for the equation $u_{tt}-u_{xx}+V(x)u=0$
\jour Mat. Sb.
\yr 1991
\vol 182
\issue 3
\pages 307--331
\mathnet{http://mi.mathnet.ru/sm1296}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1110068}
\zmath{https://zbmath.org/?q=an:0782.93054|0735.93042}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1992SbMat..72..287A}
\transl
\jour Math. USSR-Sb.
\yr 1992
\vol 72
\issue 2
\pages 287--310
\crossref{https://doi.org/10.1070/SM1992v072n02ABEH002141}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992JT05200001}
Linking options:
  • https://www.mathnet.ru/eng/sm1296
  • https://doi.org/10.1070/SM1992v072n02ABEH002141
  • https://www.mathnet.ru/eng/sm/v182/i3/p307
  • This publication is cited in the following 37 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1991 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:877
    Russian version PDF:256
    English version PDF:30
    References:86
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024