Abstract:
The structure of the multiplicative group of a group algebra is studied. The main problem is that of describing the structure of groups whose group algebras over a given field have multiplicative groups satisfying an Engel (or bounded Engel) condition.
\Bibitem{BovKhr91}
\by A.~A.~Bovdi, I.~I.~Khripta
\paper Engel properties of the multiplicative group of a~group algebra
\jour Math. USSR-Sb.
\yr 1992
\vol 72
\issue 1
\pages 121--134
\mathnet{http://mi.mathnet.ru/eng/sm1285}
\crossref{https://doi.org/10.1070/SM1992v072n01ABEH001265}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1098843}
\zmath{https://zbmath.org/?q=an:0776.16010|0723.16013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1992SbMat..72..121B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992JF72300007}
Linking options:
https://www.mathnet.ru/eng/sm1285
https://doi.org/10.1070/SM1992v072n01ABEH001265
https://www.mathnet.ru/eng/sm/v182/i1/p130
This publication is cited in the following 4 articles:
Orest Artemovych, Victor Bovdi, “Torsion subgroups, solvability and the Engel condition in associative rings”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 116:3 (2022)
A. Bovdi, “Group algebras with an Engel group of units”, J Austral Math Soc, 80:2 (2006), 173
J. Kurdics, “Engel properties of group algebras II”, Journal of Pure and Applied Algebra, 133:1-2 (1998), 179
Bovdi A., “The Group of Units of a Group Algebra of Characteristic P”, Publ. Math.-Debr., 52:1-2 (1998), 193–244