Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1992, Volume 71, Issue 2, Pages 549–560
DOI: https://doi.org/10.1070/SM1992v071n02ABEH001408
(Mi sm1256)
 

On the nonbendability of closed surfaces of trigonometric type

Yu. A. Aminov

Physical Engineering Institute of Low Temperatures, UkrSSR Academy of Sciences
References:
Abstract: In connection with a well-known problem on the existence of closed bendable surfaces in $E^3$ the author considers the class of surfaces for which each component of the radius vector is a trigonometric polynomial in two variables. Two theorems on the nonbendability of surfaces in this class are proved, and an expression for the volume of the domain bounded by such a surface is established. Theorem 1 (the main theorem) asserts the nonbendability of a surface under the condition that some Diophantine equation does not have negative solutions. In this case the coefficients of the second fundamental form can be expressed in a finite-valued way in terms of the coefficients of the first fundamental form as algebraic expressions.
Received: 08.12.1988
Russian version:
Matematicheskii Sbornik, 1990, Volume 181, Number 12, Pages 1710–1720
Bibliographic databases:
UDC: 514
MSC: 53A05
Language: English
Original paper language: Russian
Citation: Yu. A. Aminov, “On the nonbendability of closed surfaces of trigonometric type”, Mat. Sb., 181:12 (1990), 1710–1720; Math. USSR-Sb., 71:2 (1992), 549–560
Citation in format AMSBIB
\Bibitem{Ami90}
\by Yu.~A.~Aminov
\paper On the nonbendability of closed surfaces of trigonometric type
\jour Mat. Sb.
\yr 1990
\vol 181
\issue 12
\pages 1710--1720
\mathnet{http://mi.mathnet.ru/sm1256}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1099523}
\zmath{https://zbmath.org/?q=an:0776.53003|0718.53006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1992SbMat..71..549A}
\transl
\jour Math. USSR-Sb.
\yr 1992
\vol 71
\issue 2
\pages 549--560
\crossref{https://doi.org/10.1070/SM1992v071n02ABEH001408}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992HU58600018}
Linking options:
  • https://www.mathnet.ru/eng/sm1256
  • https://doi.org/10.1070/SM1992v071n02ABEH001408
  • https://www.mathnet.ru/eng/sm/v181/i12/p1710
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:349
    Russian version PDF:110
    English version PDF:14
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024