|
This article is cited in 24 scientific papers (total in 24 papers)
Spectral functions of a canonical system of order $2n$
A. L. Sakhnovich Institute of Hydromechanics Academy of Science of UkrSSR
Abstract:
The author describes a set of pseudospectral functions of the canonical system of differential equations
$$
\frac{dW(x,\lambda)}{dx}=i\lambda JH(x)W(x,\lambda), \qquad W(0,\lambda)=E_{2n},
$$
where $0\leqslant x\leqslant l<\infty$, $H(x)=H^*(x)\geqslant 0$,
$J=\begin{bmatrix}0&E_n\\E_n&0\end{bmatrix}$.
In terms of the Hamiltonians $H(x)$, conditions are given under which the pseudospectral functions are spectral functions.
Received: 20.01.1989
Citation:
A. L. Sakhnovich, “Spectral functions of a canonical system of order $2n$”, Mat. Sb., 181:11 (1990), 1510–1524; Math. USSR-Sb., 71:2 (1992), 355–369
Linking options:
https://www.mathnet.ru/eng/sm1242https://doi.org/10.1070/SM1992v071n02ABEH002131 https://www.mathnet.ru/eng/sm/v181/i11/p1510
|
Statistics & downloads: |
Abstract page: | 326 | Russian version PDF: | 98 | English version PDF: | 10 | References: | 41 | First page: | 1 |
|