|
This article is cited in 6 scientific papers (total in 6 papers)
Hilbert transform and exponential integral estimates of rectangular sums of double Fourier series
G. A. Karagulian Institute of Mathematics, National Academy of Sciences of Armenia
Abstract:
A new integral estimate for rectangular partial sums of double Fourier series is obtained.
The main result of the paper is the following.
Theorem.
{\it For any $f\in L\log L(\mathbf T^2)$ and $\delta>0$ there exists a set
$E_{\delta,f}\in\mathbf T^2$, $|E_{\delta,f}|>(2\pi)^2-\delta$ such that}
\begin{align*}
&1)\quad
\int_{E_{\delta,f}}\exp\biggl[\frac{c_1\delta|S_{N,M}(x,y,f)|}{\|f\|_{L\log L(\mathbf T^2)}}\biggr]^{1/2}\,dx\,dy\leqslant C_2, \qquad N,M=1,2,\dots,
\\
&2)\quad
\lim_{N,M\to\infty}\int_{E_{\delta,f}}\bigl[\exp(|S_{N,M}(x,y,f)-f(x,y)|)^{1/2}-1\bigr]\,dx\,dy=0.
\end{align*}
This theorem yields estimates almost everywhere for rectangular sums of double Fourier series and convergence in $L^p$ on sets of large measure.
Received: 10.01.1995
Citation:
G. A. Karagulian, “Hilbert transform and exponential integral estimates of rectangular sums of double Fourier series”, Sb. Math., 187:3 (1996), 365–384
Linking options:
https://www.mathnet.ru/eng/sm116https://doi.org/10.1070/SM1996v187n03ABEH000116 https://www.mathnet.ru/eng/sm/v187/i3/p55
|
|