Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1991, Volume 69, Issue 1, Pages 227–253
DOI: https://doi.org/10.1070/SM1991v069n01ABEH001235
(Mi sm1152)
 

This article is cited in 27 scientific papers (total in 27 papers)

Necessary and sufficient conditions for topological equivalence of three-dimensional Morse–Smale dynamical systems with a finite number of singular trajectories

Ya. L. Umanskii

Gor'kii Agricultural Institute
References:
Abstract: The author introduces a complete topological invariant of three-dimensional Morse–Smale systems with finitely many singular trajectories, including closed trajectories, which is called the scheme of the dynamical system. Conditions for the equivalence of schemes are given, and it is shown that two systems are topological equivalent if and only if their schemes are equivalent.
Received: 26.06.1987 and 07.09.1989
Russian version:
Matematicheskii Sbornik, 1990, Volume 181, Number 2, Pages 212–239
Bibliographic databases:
UDC: 517.9
MSC: Primary 58F09, 58F10; Secondary 58F15, 58F21
Language: English
Original paper language: Russian
Citation: Ya. L. Umanskii, “Necessary and sufficient conditions for topological equivalence of three-dimensional Morse–Smale dynamical systems with a finite number of singular trajectories”, Mat. Sb., 181:2 (1990), 212–239; Math. USSR-Sb., 69:1 (1991), 227–253
Citation in format AMSBIB
\Bibitem{Uma90}
\by Ya.~L.~Umanskii
\paper Necessary and sufficient conditions for topological equivalence of three-dimensional Morse--Smale dynamical systems with a~finite number of singular trajectories
\jour Mat. Sb.
\yr 1990
\vol 181
\issue 2
\pages 212--239
\mathnet{http://mi.mathnet.ru/sm1152}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1046600}
\zmath{https://zbmath.org/?q=an:0717.58033}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1991SbMat..69..227U}
\transl
\jour Math. USSR-Sb.
\yr 1991
\vol 69
\issue 1
\pages 227--253
\crossref{https://doi.org/10.1070/SM1991v069n01ABEH001235}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991FM83100014}
Linking options:
  • https://www.mathnet.ru/eng/sm1152
  • https://doi.org/10.1070/SM1991v069n01ABEH001235
  • https://www.mathnet.ru/eng/sm/v181/i2/p212
  • This publication is cited in the following 27 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:520
    Russian version PDF:200
    English version PDF:28
    References:54
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024