|
This article is cited in 4 scientific papers (total in 4 papers)
Approximation of monotone functions by monotone polynomials
I. A. Shevchuk
Abstract:
The following theorem is proved for the case $k+r>2$.
Theorem. If $k$, $r\in{\mathbb N}$, $I:=[-1,1]$, and the function $f=f(x)$ is nondecreasing on $I$ and has $r$ continuous derivatives, then for each positive integer $n\geqslant r + k - 1$ there is an algebraic polynomial $P_n = P_n(x)$ of degree $\leqslant n$ that is nondecreasing on $I$ and such that for all $x\in I$
$$
|f(x)-P_n(x)|\leqslant c\biggl({1\over n^2}+{\sqrt {1-x^2}\over n}\,\biggr)^r
\omega _k\biggl(f^{(r)};{1\over n^2}+{\sqrt{1-x^2}\over n}\,\biggr), \qquad
c=c(r,k),
$$
where $\omega_k(f^{(r)};\,t)$ is the $k$th-order modulus of continuity of the function
$f^{(r)}=f^{(r)}(x)$.
Received: 02.03.1990 and 15.11.1991
Citation:
I. A. Shevchuk, “Approximation of monotone functions by monotone polynomials”, Mat. Sb., 183:5 (1992), 63–78; Russian Acad. Sci. Sb. Math., 76:1 (1993), 51–64
Linking options:
https://www.mathnet.ru/eng/sm1123https://doi.org/10.1070/SM1993v076n01ABEH003401 https://www.mathnet.ru/eng/sm/v183/i5/p63
|
Statistics & downloads: |
Abstract page: | 461 | Russian version PDF: | 149 | English version PDF: | 10 | References: | 51 | First page: | 1 |
|