Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1993, Volume 76, Issue 1, Pages 51–64
DOI: https://doi.org/10.1070/SM1993v076n01ABEH003401
(Mi sm1123)
 

This article is cited in 4 scientific papers (total in 4 papers)

Approximation of monotone functions by monotone polynomials

I. A. Shevchuk
References:
Abstract: The following theorem is proved for the case $k+r>2$.
Theorem. If $k$, $r\in{\mathbb N}$, $I:=[-1,1]$, and the function $f=f(x)$ is nondecreasing on $I$ and has $r$ continuous derivatives, then for each positive integer $n\geqslant r + k - 1$ there is an algebraic polynomial $P_n = P_n(x)$ of degree $\leqslant n$ that is nondecreasing on $I$ and such that for all $x\in I$
$$ |f(x)-P_n(x)|\leqslant c\biggl({1\over n^2}+{\sqrt {1-x^2}\over n}\,\biggr)^r \omega _k\biggl(f^{(r)};{1\over n^2}+{\sqrt{1-x^2}\over n}\,\biggr), \qquad c=c(r,k), $$
where $\omega_k(f^{(r)};\,t)$ is the $k$th-order modulus of continuity of the function $f^{(r)}=f^{(r)}(x)$.
Received: 02.03.1990 and 15.11.1991
Russian version:
Matematicheskii Sbornik, 1992, Volume 183, Number 5, Pages 63–78
Bibliographic databases:
UDC: 517.5
MSC: Primary 41A10, 41A25; Secondary 26A15
Language: English
Original paper language: Russian
Citation: I. A. Shevchuk, “Approximation of monotone functions by monotone polynomials”, Mat. Sb., 183:5 (1992), 63–78; Russian Acad. Sci. Sb. Math., 76:1 (1993), 51–64
Citation in format AMSBIB
\Bibitem{She92}
\by I.~A.~Shevchuk
\paper Approximation of monotone functions by monotone polynomials
\jour Mat. Sb.
\yr 1992
\vol 183
\issue 5
\pages 63--78
\mathnet{http://mi.mathnet.ru/sm1123}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1184310}
\zmath{https://zbmath.org/?q=an:0782.41013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1993SbMat..76...51S}
\transl
\jour Russian Acad. Sci. Sb. Math.
\yr 1993
\vol 76
\issue 1
\pages 51--64
\crossref{https://doi.org/10.1070/SM1993v076n01ABEH003401}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MD58900004}
Linking options:
  • https://www.mathnet.ru/eng/sm1123
  • https://doi.org/10.1070/SM1993v076n01ABEH003401
  • https://www.mathnet.ru/eng/sm/v183/i5/p63
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:461
    Russian version PDF:149
    English version PDF:10
    References:51
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024