Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 7, Pages 1025–1035
DOI: https://doi.org/10.1070/SM2006v197n07ABEH003787
(Mi sm1105)
 

This article is cited in 3 scientific papers (total in 3 papers)

Approximation of functions in $H^p$, $0<p\le1$, by generalized Riesz means with fractional exponents

S. G. Pribegin

Odessa National Maritime University
References:
Abstract: For $H^p$ functions in the unit disc, $0<p\le1$, it is shown that the rate of approximation of the boundary function in the $L^p$ metric by the generalized Riesz means $R_\varepsilon^{l,\alpha}(f,z)$, $\varepsilon>0$, $(l+1)p>1$, $(\alpha+1)p>1$, is equivalent to the modulus of smoothness of fractional order $l$. This is a known result in the case of positive integer $l$.
Bibliography: 8 titles.
Received: 20.12.2004 and 01.07.2005
Russian version:
Matematicheskii Sbornik, 2006, Volume 197, Number 7, Pages 77–86
DOI: https://doi.org/10.4213/sm1105
Bibliographic databases:
UDC: 517.5
MSC: Primary 41A25, 30D55; Secondary 26A15
Language: English
Original paper language: Russian
Citation: S. G. Pribegin, “Approximation of functions in $H^p$, $0<p\le1$, by generalized Riesz means with fractional exponents”, Mat. Sb., 197:7 (2006), 77–86; Sb. Math., 197:7 (2006), 1025–1035
Citation in format AMSBIB
\Bibitem{Pri06}
\by S.~G.~Pribegin
\paper Approximation of functions in $H^p$, $0<p\le1$,
by generalized Riesz means with fractional exponents
\jour Mat. Sb.
\yr 2006
\vol 197
\issue 7
\pages 77--86
\mathnet{http://mi.mathnet.ru/sm1105}
\crossref{https://doi.org/10.4213/sm1105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2277332}
\zmath{https://zbmath.org/?q=an:1148.41016}
\elib{https://elibrary.ru/item.asp?id=9296524}
\transl
\jour Sb. Math.
\yr 2006
\vol 197
\issue 7
\pages 1025--1035
\crossref{https://doi.org/10.1070/SM2006v197n07ABEH003787}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000241860100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33751106216}
Linking options:
  • https://www.mathnet.ru/eng/sm1105
  • https://doi.org/10.1070/SM2006v197n07ABEH003787
  • https://www.mathnet.ru/eng/sm/v197/i7/p77
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:541
    Russian version PDF:213
    English version PDF:20
    References:52
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024