Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1994, Volume 77, Issue 2, Pages 313–330
DOI: https://doi.org/10.1070/SM1994v077n02ABEH003443
(Mi sm1089)
 

This article is cited in 4 scientific papers (total in 4 papers)

On upper estimates of the partial sums of a trigonometric series in terms of lower estimates

A. S. Belov
References:
Abstract: Let $\{a_k\}_{k=0}^\infty$ and $\{b_k\}_{k=0}^\infty$ be sequences of real numbers and let $ S_n(x)$ be defined by
$$ S_n(x)=\sum^n_{k=0}\bigl(a_k\cos(kx)+b_k\sin(kx)\bigr),\qquad n=0,1,\dotsc\,. $$
It is proved that the estimate
$$ \max_x S_n(x)\leqslant 4a_0 n^{1-\alpha}, $$
holds for each natural number $n$ such that $S_m(x)\geqslant0$ for all $x$ and $m=1,\,\dots,\,n$. Here $\alpha\in(0,\,1)$ is the unique root of the equation
$$ \int^{3\pi /2}_0 t^{-\alpha}\cos t\,dt=0. $$
It is proved that the order $n^{1-\alpha}$ in this estimate cannot be improved. Various generalizations of this result are also obtained.
Received: 13.02.1992
Russian version:
Matematicheskii Sbornik, 1992, Volume 183, Number 11, Pages 55–74
Bibliographic databases:
UDC: 517.5
MSC: Primary 42A05; Secondary 42A32, 42B05
Language: English
Original paper language: Russian
Citation: A. S. Belov, “On upper estimates of the partial sums of a trigonometric series in terms of lower estimates”, Mat. Sb., 183:11 (1992), 55–74; Russian Acad. Sci. Sb. Math., 77:2 (1994), 313–330
Citation in format AMSBIB
\Bibitem{Bel92}
\by A.~S.~Belov
\paper On upper estimates of the~partial sums of a~trigonometric series in terms of lower estimates
\jour Mat. Sb.
\yr 1992
\vol 183
\issue 11
\pages 55--74
\mathnet{http://mi.mathnet.ru/sm1089}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1208214}
\zmath{https://zbmath.org/?q=an:0796.42001}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1994SbMat..77..313B}
\transl
\jour Russian Acad. Sci. Sb. Math.
\yr 1994
\vol 77
\issue 2
\pages 313--330
\crossref{https://doi.org/10.1070/SM1994v077n02ABEH003443}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994NF83500005}
Linking options:
  • https://www.mathnet.ru/eng/sm1089
  • https://doi.org/10.1070/SM1994v077n02ABEH003443
  • https://www.mathnet.ru/eng/sm/v183/i11/p55
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:475
    Russian version PDF:108
    English version PDF:30
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024