Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1993, Volume 76, Issue 1, Pages 199–210
DOI: https://doi.org/10.1070/SM1993v076n01ABEH003408
(Mi sm1048)
 

This article is cited in 1 scientific paper (total in 1 paper)

$L_p$ extensions of Gonchar's inequality for rational functions

A. L. Levin, E. B. Saff
References:
Abstract: Given a condenser $~(E,\, F)$ in the complex plane, let $~C(E,\, F)$ denote its capacity and let $~\mu^*=\mu_E^*-\mu_F^*$ be the (signed) equilibrium distribution for $~(E,\, F)$. Given a finite positive measure $\mu$ on $E\cup F$, let
$$ G(\mu_E')=\exp\biggl(\,\int\log(d\mu/d\mu_E^*)\,d\mu_E^*\biggr),\quad G(\mu_F')=\exp\biggr(\,\int\log(d\mu/d\mu_F^*)\,d\mu_F^*\biggr). $$
We show that for $0<p,q<\infty$ and for any rational function $r_n$ of order $n$
\begin{equation} \|r_n\|_{L_p(d\mu,E)}\|1/r_n\|_{L_q(d\mu,F)}\geqslant e^{-n/C(E,F)}G^{1/p}(\mu_E') G^{1/q}(\mu_E'), \tag{1} \end{equation}
which extends a classical result due to A. A. Gonchar. For a symmetric condenser we also obtain a sharp lower bound for $\|r_n-\lambda\|_{L_p(d\mu,\,E\cup F)}$, where $\lambda=\lambda(z)$ is equal to $0$ on $E$ and $1$ on $F$. The question of exactness of (1) and the relation to certain $n$-widths are also discussed.
Received: 12.06.1991
Bibliographic databases:
UDC: 517.5
MSC: Primary 30A10, 30C85; Secondary 31A15
Language: English
Original paper language: Russian
Citation: A. L. Levin, E. B. Saff, “$L_p$ extensions of Gonchar's inequality for rational functions”, Russian Acad. Sci. Sb. Math., 76:1 (1993), 199–210
Citation in format AMSBIB
\Bibitem{LevSaf92}
\by A.~L.~Levin, E.~B.~Saff
\paper $L_p$ extensions of Gonchar's inequality for rational functions
\jour Russian Acad. Sci. Sb. Math.
\yr 1993
\vol 76
\issue 1
\pages 199--210
\mathnet{http://mi.mathnet.ru//eng/sm1048}
\crossref{https://doi.org/10.1070/SM1993v076n01ABEH003408}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1186780}
\zmath{https://zbmath.org/?q=an:0782.30030|0766.30033}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1993SbMat..76..199L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MD58900011}
Linking options:
  • https://www.mathnet.ru/eng/sm1048
  • https://doi.org/10.1070/SM1993v076n01ABEH003408
  • https://www.mathnet.ru/eng/sm/v183/i6/p97
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025