Abstract:
Results on uniqueness of solution of the Cauchy problem in the class of functions of power growth and on well-posedness of this problem in such a space are presented.
Citation:
A. L. Pavlov, “The Cauchy problem for Sobolev–Gal'pern type equations in spaces of functions of power growth”, Russian Acad. Sci. Sb. Math., 80:2 (1995), 255–269
\Bibitem{Pav93}
\by A.~L.~Pavlov
\paper The Cauchy problem for Sobolev--Gal'pern type equations in spaces of functions of power growth
\jour Russian Acad. Sci. Sb. Math.
\yr 1995
\vol 80
\issue 2
\pages 255--269
\mathnet{http://mi.mathnet.ru/eng/sm1023}
\crossref{https://doi.org/10.1070/SM1995v080n02ABEH003524}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1250999}
\zmath{https://zbmath.org/?q=an:0836.35031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995QR47400001}
Linking options:
https://www.mathnet.ru/eng/sm1023
https://doi.org/10.1070/SM1995v080n02ABEH003524
https://www.mathnet.ru/eng/sm/v184/i11/p3
This publication is cited in the following 4 articles:
A. L. Pavlov, “The solvability of the Cauchy problem for a class of Sobolev-type equations in tempered distributions”, Siberian Math. J., 63:5 (2022), 940–955
A. L. Pavlov, “Existence of solutions to the Cauchy problem for some class of Sobolev-type equations in the space of tempered distributions”, Siberian Math. J., 60:4 (2019), 644–660
A. L. Pavlov, “The Cauchy problem for one equation of Sobolev type”, Siberian Adv. Math., 29:1 (2019), 57–76
Yu. F. Korobeinik, “Representative systems of exponentials and the Cauchy problem for partial differential equations with constant coefficients”, Izv. Math., 61:3 (1997), 553–592