Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2007, Volume 10, Number 4, Pages 361–370 (Mi sjvm92)  

On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$

E. D. Moskalenskii

Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences
References:
Abstract: The paper offers a new approach to finding a solution to the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$ with a variable velocity of the waves propagation $V(x,y,z)(\phi=1/V)$. It is based on a certain change of a dependent variable and reduction of the equation to a system of three quasilinear equations. It is shown that for certain cases of the function $V(x,y,z)$, exact solutions to this equation can be found with the help of the approach proposed.
Key words: wave propagation, inhomogeneous medium, eikonal equation.
Received: 01.11.2006
UDC: 517.958
Language: Russian
Citation: E. D. Moskalenskii, “On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$”, Sib. Zh. Vychisl. Mat., 10:4 (2007), 361–370
Citation in format AMSBIB
\Bibitem{Mos07}
\by E.~D.~Moskalenskii
\paper On one approach to solving the eikonal equation $f_x^2+f_y^2+f_z^2=\phi^2$
\jour Sib. Zh. Vychisl. Mat.
\yr 2007
\vol 10
\issue 4
\pages 361--370
\mathnet{http://mi.mathnet.ru/sjvm92}
Linking options:
  • https://www.mathnet.ru/eng/sjvm92
  • https://www.mathnet.ru/eng/sjvm/v10/i4/p361
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:286
    Full-text PDF :143
    References:38
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024