|
On existence and numerical solution of a new class of nonlinear second degree integro-differential Volterra equations with a convolution kernel
S. Lemitaab, M. L. Guessoumic a Department of Mathematics and Computer Science, Echahid Cheikh Larbi Tebessi University, Road of Constantine, Tebessa,
12022, Algeria
b Laboratoire de Mathématiques Appliquées et de Modélisation, Université 8 Mai 1945 Guelma, B.P. 401, Guelma, 24000, Algérie
c Département des Sciences Exactes, Ecole Normale Supérieure de Ouargla, Cité Ennacer, Ouargla, 30000, Algérie
Abstract:
This paper considers a new class of nonlinear second degree integro-differential Volterra equations with a convolution kernel. We derive some sufficient conditions to establish the existence and uniqueness of solutions by using the Schauder fixed point theorem. Moreover, the Nyström method is applied to obtain an approximate solution of the proposed Volterra equation. Numerical examples are given to validate the adduced results.
Key words:
Volterra equation, integro-differential equation, convolution kernel, Schauder fixed point theorem, Nyström method.
Received: 21.11.2023 Revised: 02.04.2024 Accepted: 19.04.2024
Citation:
S. Lemita, M. L. Guessoumi, “On existence and numerical solution of a new class of nonlinear second degree integro-differential Volterra equations with a convolution kernel”, Sib. Zh. Vychisl. Mat., 27:3 (2024), 303–318
Linking options:
https://www.mathnet.ru/eng/sjvm879 https://www.mathnet.ru/eng/sjvm/v27/i3/p303
|
Statistics & downloads: |
Abstract page: | 112 | Full-text PDF : | 1 | References: | 25 | First page: | 16 |
|