Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2024, Volume 27, Number 1, Pages 83–95
DOI: https://doi.org/10.15372/SJNM20240107
(Mi sjvm863)
 

New a posteriori error estimates for optimal control problems governed by parabolic integro-differential equations

H. Chen, T. Hou

School of Mathematics and Statistics, Beihua University, Jilin 132013, Jilin, China
References:
Abstract: In this paper, we provide a new a posteriori error analysis for a linear finite element approximation of a parabolic integro-differential optimal control problem. The state and co-state are approximated by piecewise linear functions, while the control variable is discretized by a variational discretization method. We first define elliptic reconstructions of numerical solutions and then discuss a posteriori error estimates for all variables.
Key words: parabolic integro-differential equations, finite element, elliptic reconstruction, a posteriori error estimates.
Funding agency Grant number
Natural Science Foundation of Jilin Province 20230101279JC
Received: 01.06.2023
Revised: 14.08.2023
Accepted: 27.10.2023
Bibliographic databases:
Document Type: Article
MSC: 49J20, 65N30
Language: Russian
Citation: H. Chen, T. Hou, “New a posteriori error estimates for optimal control problems governed by parabolic integro-differential equations”, Sib. Zh. Vychisl. Mat., 27:1 (2024), 83–95
Citation in format AMSBIB
\Bibitem{CheHou24}
\by H.~Chen, T.~Hou
\paper New a posteriori error estimates for optimal control problems governed by parabolic integro-differential equations
\jour Sib. Zh. Vychisl. Mat.
\yr 2024
\vol 27
\issue 1
\pages 83--95
\mathnet{http://mi.mathnet.ru/sjvm863}
\crossref{https://doi.org/10.15372/SJNM20240107}
\edn{https://elibrary.ru/DHHTVO}
Linking options:
  • https://www.mathnet.ru/eng/sjvm863
  • https://www.mathnet.ru/eng/sjvm/v27/i1/p83
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:43
    Full-text PDF :2
    References:20
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024