Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2023, Volume 26, Number 4, Pages 345–356
DOI: https://doi.org/10.15372/SJNM20230401
(Mi sjvm849)
 

An approximate iterative algorithm for modeling of non-Gaussian vectors with given marginal distributions and a covariance matrix

M. S. Akentevaab, N. A. Kargapolovaab, V. A. Ogorodnikovab

a Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Russia
References:
Abstract: A new iterative method for the modeling of non-Gaussian random vectors with given marginal distributions and covariance matrix is proposed in this paper. The algorithm is compared with another iterative algorithm for the modeling of non-Gaussian vectors, which is based on reordering a sample of independent random variables with given marginal distributions. Our numerical studies show that both algorithms are equivalent in terms of the accuracy of reproducing the given covariance matrix, but the proposed algorithm turns out to be more efficient in terms of memory usage and, in many cases, is faster than the other one.
Key words: non-Gaussian stochastic processes, stochastic modeling, marginal distributions, covariance matrix.
Funding agency Grant number
Russian Science Foundation 21-71-00007
Received: 29.03.2023
Revised: 18.05.2023
Accepted: 05.09.2023
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: M. S. Akenteva, N. A. Kargapolova, V. A. Ogorodnikov, “An approximate iterative algorithm for modeling of non-Gaussian vectors with given marginal distributions and a covariance matrix”, Sib. Zh. Vychisl. Mat., 26:4 (2023), 345–356
Citation in format AMSBIB
\Bibitem{AkeKarOgo23}
\by M.~S.~Akenteva, N.~A.~Kargapolova, V.~A.~Ogorodnikov
\paper An approximate iterative algorithm for modeling of non-Gaussian vectors with given marginal distributions and a covariance matrix
\jour Sib. Zh. Vychisl. Mat.
\yr 2023
\vol 26
\issue 4
\pages 345--356
\mathnet{http://mi.mathnet.ru/sjvm849}
\crossref{https://doi.org/10.15372/SJNM20230401}
\edn{https://elibrary.ru/VGQPJF}
Linking options:
  • https://www.mathnet.ru/eng/sjvm849
  • https://www.mathnet.ru/eng/sjvm/v26/i4/p345
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:59
    Full-text PDF :2
    References:16
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024