Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2023, Volume 26, Number 3, Pages 287–300
DOI: https://doi.org/10.15372/SJNM20230305
(Mi sjvm845)
 

Estimation of the phase probability density function based on the solve of the inverse problem

M. L. Maslakovab, V. V. Egorovab

a Russian Institute of Power Radiobuilding, Russia
b Saint-Petersburg State University of Aerospace Instrumentation, Russia
References:
Abstract: The article considers the problem of calculating the phase probability density function of a phase-shift keying signal received under conditions of distortion and additive noise. This problem is reduced to an inverse problem, namely, to solving an integral equation of the convolution type. The functions included in the integral equation are analyzed. The case of equiprobable symbols, which is important from a practical point of view, is considered separately. Numerical simulation results are presented.
Key words: angle estimation, phase, phase probability distribution function, Fourier series, inverse problem, multiparameter regularization.
Received: 11.11.2022
Revised: 14.03.2023
Accepted: 10.04.2023
Document Type: Article
UDC: 519.642
Language: Russian
Citation: M. L. Maslakov, V. V. Egorov, “Estimation of the phase probability density function based on the solve of the inverse problem”, Sib. Zh. Vychisl. Mat., 26:3 (2023), 287–300
Citation in format AMSBIB
\Bibitem{MasEgo23}
\by M.~L.~Maslakov, V.~V.~Egorov
\paper Estimation of the phase probability density function based on the solve of the inverse problem
\jour Sib. Zh. Vychisl. Mat.
\yr 2023
\vol 26
\issue 3
\pages 287--300
\mathnet{http://mi.mathnet.ru/sjvm845}
\crossref{https://doi.org/10.15372/SJNM20230305}
Linking options:
  • https://www.mathnet.ru/eng/sjvm845
  • https://www.mathnet.ru/eng/sjvm/v26/i3/p287
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:64
    Full-text PDF :2
    References:25
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024