Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2023, Volume 26, Number 1, Pages 43–55
DOI: https://doi.org/10.15372/SJNM20230104
(Mi sjvm828)
 

A posteriori error majorants for numerical solutions of plate bending problems on a Winkler basis

V. G. Korneev

Saint Petersburg State University, Saint Petersburg, Russia
References:
Abstract: The paper is devoted to the mixed finite element method for the equation $\Delta\Delta u+\kappa^2u=f$, $x\in\Omega$, with boundary conditions $u=\partial u/\partial\nu=0$ on $\partial\Omega$, where $\nu$ is the normal to the boundary and $\kappa\geqslant0$ is an arbitrary constant on each finite element. At $\kappa\equiv0$ residual type a posteriori error bounds for the mixed Ciarlet-Raviart method were derived by several authors at the use of different error norms. The bounds, termed sometimes a posteriori functional error majorants, seem to be less dependent on the constants in the general approximation bounds and are more flexible and adaptable for attaining higher accuracy at practical implementation. In this paper, we present a posteriori functional error majorants for the mixed Ciarlet-Raviart method in the case of $\kappa\ne0$ and having large jumps. Robustness and sharpness of the bounds are approved by the lower bounds of local efficiency.
Key words: a posteriori error bounds, singularly perturbed elliptic equations of $4$th order, mixed finite element method, lower error bounds.
Received: 10.10.2022
Revised: 09.11.2022
Accepted: 23.11.2022
Document Type: Article
UDC: 519.635.4
Language: Russian
Citation: V. G. Korneev, “A posteriori error majorants for numerical solutions of plate bending problems on a Winkler basis”, Sib. Zh. Vychisl. Mat., 26:1 (2023), 43–55
Citation in format AMSBIB
\Bibitem{Kor23}
\by V.~G.~Korneev
\paper A posteriori error majorants for numerical solutions of plate bending problems on a Winkler basis
\jour Sib. Zh. Vychisl. Mat.
\yr 2023
\vol 26
\issue 1
\pages 43--55
\mathnet{http://mi.mathnet.ru/sjvm828}
\crossref{https://doi.org/10.15372/SJNM20230104}
Linking options:
  • https://www.mathnet.ru/eng/sjvm828
  • https://www.mathnet.ru/eng/sjvm/v26/i1/p43
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:72
    Full-text PDF :1
    References:16
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024